基于k-均值距离的神经网络节点聚类在无线局域网中增强RDMAR协议中的应用

O. F. Hamad, Mikyung Kang, Jin-Han Jeon, Ji-Seung Nam
{"title":"基于k-均值距离的神经网络节点聚类在无线局域网中增强RDMAR协议中的应用","authors":"O. F. Hamad, Mikyung Kang, Jin-Han Jeon, Ji-Seung Nam","doi":"10.1109/ISSPIT.2008.4775666","DOIUrl":null,"url":null,"abstract":"k-means distance-based nodes clustering technique proposed enhance the performance of RDMAR protocol in a Mobile Ad-hoc NETwork (MANET). To limit the flood search to just a circular local area around the source, the Relative Distance Micro-discovery Ad Hoc Routing (RDMAR) protocol uses the Relative Distance (RD). If the distance of flood discovery is further limited by clustering the nodes with similar characters in to one group, different from the dissimilar characters' group, the performance of the RDMAR implementation can be elevated. The k-means algorithm, similar to the one in unsupervised learning in pattern classification, can be recursively applied to re-classify the clusters as the MANET environment, resource availability, and node demands change. This technique can be more effective in a MANET with comparatively moderate change of the dynamicity and slow change in nodes' demands plus highly accumulated groups of nodes at given sub-areas.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural Network's k-means Distance-Based Nodes-Clustering for Enhanced RDMAR Protocol in a MANET\",\"authors\":\"O. F. Hamad, Mikyung Kang, Jin-Han Jeon, Ji-Seung Nam\",\"doi\":\"10.1109/ISSPIT.2008.4775666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"k-means distance-based nodes clustering technique proposed enhance the performance of RDMAR protocol in a Mobile Ad-hoc NETwork (MANET). To limit the flood search to just a circular local area around the source, the Relative Distance Micro-discovery Ad Hoc Routing (RDMAR) protocol uses the Relative Distance (RD). If the distance of flood discovery is further limited by clustering the nodes with similar characters in to one group, different from the dissimilar characters' group, the performance of the RDMAR implementation can be elevated. The k-means algorithm, similar to the one in unsupervised learning in pattern classification, can be recursively applied to re-classify the clusters as the MANET environment, resource availability, and node demands change. This technique can be more effective in a MANET with comparatively moderate change of the dynamicity and slow change in nodes' demands plus highly accumulated groups of nodes at given sub-areas.\",\"PeriodicalId\":213756,\"journal\":{\"name\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2008.4775666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了基于k均值距离的节点聚类技术,提高了移动自组网(MANET)中RDMAR协议的性能。为了将洪水搜索限制在源周围的圆形局部区域内,相对距离微发现自组织路由(RDMAR)协议使用了相对距离(RD)。如果将特征相似的节点聚在一组中,而不是将特征不相似的节点聚在一组中,进一步限制洪水发现的距离,可以提高RDMAR实现的性能。k-means算法类似于模式分类中的无监督学习算法,可以在MANET环境、资源可用性和节点需求变化时递归地应用于对聚类进行重新分类。这种技术在动态变化相对温和、节点需求变化缓慢以及给定子区域节点群高度积累的MANET中更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network's k-means Distance-Based Nodes-Clustering for Enhanced RDMAR Protocol in a MANET
k-means distance-based nodes clustering technique proposed enhance the performance of RDMAR protocol in a Mobile Ad-hoc NETwork (MANET). To limit the flood search to just a circular local area around the source, the Relative Distance Micro-discovery Ad Hoc Routing (RDMAR) protocol uses the Relative Distance (RD). If the distance of flood discovery is further limited by clustering the nodes with similar characters in to one group, different from the dissimilar characters' group, the performance of the RDMAR implementation can be elevated. The k-means algorithm, similar to the one in unsupervised learning in pattern classification, can be recursively applied to re-classify the clusters as the MANET environment, resource availability, and node demands change. This technique can be more effective in a MANET with comparatively moderate change of the dynamicity and slow change in nodes' demands plus highly accumulated groups of nodes at given sub-areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1