使用未标记数据进行美国最高法院案件分类

George Sanchez
{"title":"使用未标记数据进行美国最高法院案件分类","authors":"George Sanchez","doi":"10.1109/ICDMW51313.2020.00116","DOIUrl":null,"url":null,"abstract":"The Supreme Court Database provided by Washington University (in St. Louis) School of Law is an essential legal research tool. The Supreme Court Database is organized and categorized to Issue Areas to make it easy for legal researchers to find on-point cases for an area of law. This paper used a semi-supervised learning approach to automatically categorize the Supreme Court's opinions to Issue Areas. An inductive method of clustering then labeling approach was used by employing a nonmetric space of a fast Hierarchical Navigable Small World graph index containing USE (Universal Sentence Encoder) embeddings. After obtaining the labels from the semi-supervised approach, we evaluate several classification approaches to use with the data achieving the weighted average F1-Scores: SVM with Max Norm Features 0.75, RNN 0.78, and BERT 0.68","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Unlabeled Data for US Supreme Court Case Classification\",\"authors\":\"George Sanchez\",\"doi\":\"10.1109/ICDMW51313.2020.00116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Supreme Court Database provided by Washington University (in St. Louis) School of Law is an essential legal research tool. The Supreme Court Database is organized and categorized to Issue Areas to make it easy for legal researchers to find on-point cases for an area of law. This paper used a semi-supervised learning approach to automatically categorize the Supreme Court's opinions to Issue Areas. An inductive method of clustering then labeling approach was used by employing a nonmetric space of a fast Hierarchical Navigable Small World graph index containing USE (Universal Sentence Encoder) embeddings. After obtaining the labels from the semi-supervised approach, we evaluate several classification approaches to use with the data achieving the weighted average F1-Scores: SVM with Max Norm Features 0.75, RNN 0.78, and BERT 0.68\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

华盛顿大学(圣路易斯)法学院提供的最高法院数据库是必不可少的法律研究工具。最高法院数据库按问题领域进行组织和分类,使法律研究人员能够轻松找到法律领域的重点案例。本文采用半监督学习方法对最高法院的意见进行自动分类。利用包含USE (Universal Sentence Encoder)嵌入的快速分层可导航小世界图索引的非度量空间,采用归纳聚类再标记方法。在从半监督方法中获得标签后,我们评估了几种分类方法,以使用达到加权平均f1分数的数据:最大范数特征的SVM为0.75,RNN为0.78,BERT为0.68
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Unlabeled Data for US Supreme Court Case Classification
The Supreme Court Database provided by Washington University (in St. Louis) School of Law is an essential legal research tool. The Supreme Court Database is organized and categorized to Issue Areas to make it easy for legal researchers to find on-point cases for an area of law. This paper used a semi-supervised learning approach to automatically categorize the Supreme Court's opinions to Issue Areas. An inductive method of clustering then labeling approach was used by employing a nonmetric space of a fast Hierarchical Navigable Small World graph index containing USE (Universal Sentence Encoder) embeddings. After obtaining the labels from the semi-supervised approach, we evaluate several classification approaches to use with the data achieving the weighted average F1-Scores: SVM with Max Norm Features 0.75, RNN 0.78, and BERT 0.68
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1