基于深度学习和Viterbi算法的细胞跟踪

David E. Hernandez, Steven W. Chen, Elizabeth E. Hunter, E. Steager, Vijay R. Kumar
{"title":"基于深度学习和Viterbi算法的细胞跟踪","authors":"David E. Hernandez, Steven W. Chen, Elizabeth E. Hunter, E. Steager, Vijay R. Kumar","doi":"10.1109/MARSS.2018.8481231","DOIUrl":null,"url":null,"abstract":"We present a cell tracking pipeline that combines deep cell segmentation with a Viterbi algorithm tracker to accurately detect and track cells in microscopy videos. Our pipeline handles large illumination shifts, large appearance variability in the cells, and heavy occlusion from other cells and debris. We first train a Fully Convolutional Network (FCN) to detect the cells, then track the cells across frames using a tracker based on the Viterbi algorithm. We evaluate our algorithm on a dataset featuring Escherichia coli (E. coli) where the experimental goal is to immobilize the E. coli using blue light, thus making the dataset especially challenging due to large illumination shifts. Our results demonstrate that despite these challenges, our pipeline is able to accurately detect and track the cells.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Cell Tracking with Deep Learning and the Viterbi Algorithm\",\"authors\":\"David E. Hernandez, Steven W. Chen, Elizabeth E. Hunter, E. Steager, Vijay R. Kumar\",\"doi\":\"10.1109/MARSS.2018.8481231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a cell tracking pipeline that combines deep cell segmentation with a Viterbi algorithm tracker to accurately detect and track cells in microscopy videos. Our pipeline handles large illumination shifts, large appearance variability in the cells, and heavy occlusion from other cells and debris. We first train a Fully Convolutional Network (FCN) to detect the cells, then track the cells across frames using a tracker based on the Viterbi algorithm. We evaluate our algorithm on a dataset featuring Escherichia coli (E. coli) where the experimental goal is to immobilize the E. coli using blue light, thus making the dataset especially challenging due to large illumination shifts. Our results demonstrate that despite these challenges, our pipeline is able to accurately detect and track the cells.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了一个细胞跟踪管道,结合了深度细胞分割和Viterbi算法跟踪器,以准确地检测和跟踪显微镜视频中的细胞。我们的管道处理大的光照变化,大的细胞外观可变性,以及来自其他细胞和碎片的严重遮挡。我们首先训练一个全卷积网络(FCN)来检测细胞,然后使用基于Viterbi算法的跟踪器跨帧跟踪细胞。我们在一个以大肠杆菌(E. coli)为特征的数据集上评估了我们的算法,其中实验目标是使用蓝光固定大肠杆菌,因此由于光照的大变化,数据集特别具有挑战性。我们的结果表明,尽管存在这些挑战,我们的管道能够准确地检测和跟踪细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell Tracking with Deep Learning and the Viterbi Algorithm
We present a cell tracking pipeline that combines deep cell segmentation with a Viterbi algorithm tracker to accurately detect and track cells in microscopy videos. Our pipeline handles large illumination shifts, large appearance variability in the cells, and heavy occlusion from other cells and debris. We first train a Fully Convolutional Network (FCN) to detect the cells, then track the cells across frames using a tracker based on the Viterbi algorithm. We evaluate our algorithm on a dataset featuring Escherichia coli (E. coli) where the experimental goal is to immobilize the E. coli using blue light, thus making the dataset especially challenging due to large illumination shifts. Our results demonstrate that despite these challenges, our pipeline is able to accurately detect and track the cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright Information Ferrofluid Levitated Micro/Milli-Robots Implementation Scheme of Orbital Refueling Using Microsate IIite Assembly of Cellular Microstructures into Lobule-Like 3D Microtissues Based on Microrobotic Manipulation* Research supported by the Beijing Natural Science Foundation under Grant 4164099and the National Natural Science Foundation of China under grants 61603044and 61520106011. Three Dimensional Microfabrication Using Local Electrophoretic Deposition Assisted with Laser Trapping Controlled by a Spatial Light Modulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1