Marcelo de L. Freire, Robson G. Fechine Feitosa, Y. D. Santos, H. Menezes, G. Esmeraldo, H. Mello, E. L. Bispo Jr., G. A. L. Campos
{"title":"在编程教学和学习过程中使用问题回答:与BERT和ChatGPT的案例研究","authors":"Marcelo de L. Freire, Robson G. Fechine Feitosa, Y. D. Santos, H. Menezes, G. Esmeraldo, H. Mello, E. L. Bispo Jr., G. A. L. Campos","doi":"10.5753/encompif.2023.230661","DOIUrl":null,"url":null,"abstract":"Natural Language Processing is an area of Artificial Intelligence that has brought benefits to the most diverse processes of human activity. In this context, this work uses a Question Answering (QA) approach to help in the process of teaching and learning programming. For this purpose, it analyzed two case studies with different QA models and a database with 87 questions and answers related to teaching programming. Thus, the models achieved 62% and 85% accuracy in the first and second scenarios, respectively. The present work also discusses (i) some limitations of the approach, (ii) some qualitative pedagogical results, and, finally, indicates (iii) recommendations for future work.","PeriodicalId":219015,"journal":{"name":"Anais do X Encontro Nacional de Computação dos Institutos Federais (EnCompIF 2023)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizando Question Answering no Auxílio ao Processo de Ensino e Aprendizagem de Programação: Um Estudo de Caso com BERT e ChatGPT\",\"authors\":\"Marcelo de L. Freire, Robson G. Fechine Feitosa, Y. D. Santos, H. Menezes, G. Esmeraldo, H. Mello, E. L. Bispo Jr., G. A. L. Campos\",\"doi\":\"10.5753/encompif.2023.230661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Language Processing is an area of Artificial Intelligence that has brought benefits to the most diverse processes of human activity. In this context, this work uses a Question Answering (QA) approach to help in the process of teaching and learning programming. For this purpose, it analyzed two case studies with different QA models and a database with 87 questions and answers related to teaching programming. Thus, the models achieved 62% and 85% accuracy in the first and second scenarios, respectively. The present work also discusses (i) some limitations of the approach, (ii) some qualitative pedagogical results, and, finally, indicates (iii) recommendations for future work.\",\"PeriodicalId\":219015,\"journal\":{\"name\":\"Anais do X Encontro Nacional de Computação dos Institutos Federais (EnCompIF 2023)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do X Encontro Nacional de Computação dos Institutos Federais (EnCompIF 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/encompif.2023.230661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do X Encontro Nacional de Computação dos Institutos Federais (EnCompIF 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/encompif.2023.230661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilizando Question Answering no Auxílio ao Processo de Ensino e Aprendizagem de Programação: Um Estudo de Caso com BERT e ChatGPT
Natural Language Processing is an area of Artificial Intelligence that has brought benefits to the most diverse processes of human activity. In this context, this work uses a Question Answering (QA) approach to help in the process of teaching and learning programming. For this purpose, it analyzed two case studies with different QA models and a database with 87 questions and answers related to teaching programming. Thus, the models achieved 62% and 85% accuracy in the first and second scenarios, respectively. The present work also discusses (i) some limitations of the approach, (ii) some qualitative pedagogical results, and, finally, indicates (iii) recommendations for future work.