G. Notermans, Hans-Martin Ritter, S. Holland, D. Pogany
{"title":"ESD保护动态超调建模","authors":"G. Notermans, Hans-Martin Ritter, S. Holland, D. Pogany","doi":"10.23919/EOS/ESD.2018.8509781","DOIUrl":null,"url":null,"abstract":"The dynamic voltage overshoot of an ESD protection during triggering is determined by conductivity modulation in the silicon and inductive overshoot in the metal traces. The paper describes how to separate the two contributions and how to model these phenomena. It shows how to use this result to boost system protection for a typical USB3 interface beyond 15kV.","PeriodicalId":328499,"journal":{"name":"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling dynamic overshoot in ESD protections\",\"authors\":\"G. Notermans, Hans-Martin Ritter, S. Holland, D. Pogany\",\"doi\":\"10.23919/EOS/ESD.2018.8509781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic voltage overshoot of an ESD protection during triggering is determined by conductivity modulation in the silicon and inductive overshoot in the metal traces. The paper describes how to separate the two contributions and how to model these phenomena. It shows how to use this result to boost system protection for a typical USB3 interface beyond 15kV.\",\"PeriodicalId\":328499,\"journal\":{\"name\":\"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EOS/ESD.2018.8509781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EOS/ESD.2018.8509781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The dynamic voltage overshoot of an ESD protection during triggering is determined by conductivity modulation in the silicon and inductive overshoot in the metal traces. The paper describes how to separate the two contributions and how to model these phenomena. It shows how to use this result to boost system protection for a typical USB3 interface beyond 15kV.