利用机器学习算法研究NSL-KDD数据集的入侵检测系统

Y. Al-Khassawneh
{"title":"利用机器学习算法研究NSL-KDD数据集的入侵检测系统","authors":"Y. Al-Khassawneh","doi":"10.1109/eIT57321.2023.10187360","DOIUrl":null,"url":null,"abstract":"Over the last few years, the use of an Intrusion Detection System (IDS) has proven to be an effective method for achieving higher levels of security by detecting potentially harmful actions. Because it is unable to accurately identify all types of attacks, the current method of anomaly detection is frequently associated with high rates of false alarms and low rates of accuracy and detection. When it comes to establishing reliable and all-encompassing security, intrusion detection systems (IDS) are invaluable tools for managed service providers (MSPs). Since there are so many IDS options, it can be hard to figure out which one is best for your business and your customers. When it comes to training and testing an IDS, having access to a dataset with a large amount of high-quality data representative of real-world conditions is invaluable. In this work, NSL-KDD dataset is analyzed and is used to assess the effectiveness of various classification algorithms in detecting anomalies in network traffic patterns. In addition, we investigate the relationship between hacker attacks and the protocols found in the commonly used network protocol stack. These investigations were carried out to determine how attackers generate abnormal network traffic. The investigation has yielded a wealth of information about the relationship between the protocols and network attacks. Furthermore, the proposed model not only improves IDS precision but also opens up a new research avenue in this field.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of the Intrusion detection system for the NSL-KDD dataset using machine-learning algorithms\",\"authors\":\"Y. Al-Khassawneh\",\"doi\":\"10.1109/eIT57321.2023.10187360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last few years, the use of an Intrusion Detection System (IDS) has proven to be an effective method for achieving higher levels of security by detecting potentially harmful actions. Because it is unable to accurately identify all types of attacks, the current method of anomaly detection is frequently associated with high rates of false alarms and low rates of accuracy and detection. When it comes to establishing reliable and all-encompassing security, intrusion detection systems (IDS) are invaluable tools for managed service providers (MSPs). Since there are so many IDS options, it can be hard to figure out which one is best for your business and your customers. When it comes to training and testing an IDS, having access to a dataset with a large amount of high-quality data representative of real-world conditions is invaluable. In this work, NSL-KDD dataset is analyzed and is used to assess the effectiveness of various classification algorithms in detecting anomalies in network traffic patterns. In addition, we investigate the relationship between hacker attacks and the protocols found in the commonly used network protocol stack. These investigations were carried out to determine how attackers generate abnormal network traffic. The investigation has yielded a wealth of information about the relationship between the protocols and network attacks. Furthermore, the proposed model not only improves IDS precision but also opens up a new research avenue in this field.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年中,使用入侵检测系统(IDS)已被证明是通过检测潜在的有害行为来实现更高级别安全性的有效方法。由于无法准确识别所有类型的攻击,当前的异常检测方法经常存在高虚警率、低准确率和低检测率的问题。当涉及到建立可靠和全面的安全性时,入侵检测系统(IDS)是托管服务提供商(msp)的宝贵工具。由于存在如此多的IDS选项,因此很难确定哪一个最适合您的业务和客户。在训练和测试IDS时,能够访问具有大量代表现实世界条件的高质量数据的数据集是非常宝贵的。在这项工作中,分析了NSL-KDD数据集,并用于评估各种分类算法在检测网络流量模式异常方面的有效性。此外,我们还研究了黑客攻击与常用网络协议栈中的协议之间的关系。这些调查是为了确定攻击者是如何产生异常网络流量的。调查已经获得了大量关于协议和网络攻击之间关系的信息。此外,该模型不仅提高了IDS的精度,而且为该领域的研究开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An investigation of the Intrusion detection system for the NSL-KDD dataset using machine-learning algorithms
Over the last few years, the use of an Intrusion Detection System (IDS) has proven to be an effective method for achieving higher levels of security by detecting potentially harmful actions. Because it is unable to accurately identify all types of attacks, the current method of anomaly detection is frequently associated with high rates of false alarms and low rates of accuracy and detection. When it comes to establishing reliable and all-encompassing security, intrusion detection systems (IDS) are invaluable tools for managed service providers (MSPs). Since there are so many IDS options, it can be hard to figure out which one is best for your business and your customers. When it comes to training and testing an IDS, having access to a dataset with a large amount of high-quality data representative of real-world conditions is invaluable. In this work, NSL-KDD dataset is analyzed and is used to assess the effectiveness of various classification algorithms in detecting anomalies in network traffic patterns. In addition, we investigate the relationship between hacker attacks and the protocols found in the commonly used network protocol stack. These investigations were carried out to determine how attackers generate abnormal network traffic. The investigation has yielded a wealth of information about the relationship between the protocols and network attacks. Furthermore, the proposed model not only improves IDS precision but also opens up a new research avenue in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation of Egg counts, Micro-nutrients, and NDVI Distribution for Accurate Tracking of SCN Population Density Detection Supervised Deep Learning Models for Detecting GPS Spoofing Attacks on Unmanned Aerial Vehicles ChatGPT: A Threat Against the CIA Triad of Cyber Security Smart UX-design for Rescue Operations Wearable - A Knowledge Graph Informed Visualization Approach for Information Retrieval in Emergency Situations Comparative Study of Deep Learning LSTM and 1D-CNN Models for Real-time Flood Prediction in Red River of the North, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1