应用于高速以太网的新型小轮触发电子器件

Houbing Lu, K. Hu, Xu Wang, Feng Li, L. Han, G. Jin
{"title":"应用于高速以太网的新型小轮触发电子器件","authors":"Houbing Lu, K. Hu, Xu Wang, Feng Li, L. Han, G. Jin","doi":"10.1109/RTC.2016.7543078","DOIUrl":null,"url":null,"abstract":"The ATLAS detector will be upgraded in 2018. The main focus of the Phase-I ATLAS upgrade is on the Level-1 trigger, replacing the present muon small wheels (SW) with the “new small wheel(NSW)”, which consists of small thin gap chamber(sTGC) and micromegas (MM). A versatile application-specific integrated circuit(ASIC), the VMM chip, have been developed to read out the signals of the sTGC and MM. The VMM have 64 channels. In order to test the performance of the VMM, a large data transfer rate is needed. Meanwhile, it is required to implement the multi-board interconnection. It is proposed to apply the high-speed Ethernet-based network. We designed and implemented a test platform, the Gigabit Ethernet Module(GEM). The test result shows that the transfer rate can reach up to 926Mbps. Subsequently, the Ethernet is applied in the pad front end board (pFEB) and the thin gap chamber simulation signal generator (SG). This paper introduces the implementation of the GEM platform, as well as its applications. The features of the systems are described in detail.","PeriodicalId":383702,"journal":{"name":"2016 IEEE-NPSS Real Time Conference (RT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High speed ethernet application for the trigger electronics of the new small wheel\",\"authors\":\"Houbing Lu, K. Hu, Xu Wang, Feng Li, L. Han, G. Jin\",\"doi\":\"10.1109/RTC.2016.7543078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ATLAS detector will be upgraded in 2018. The main focus of the Phase-I ATLAS upgrade is on the Level-1 trigger, replacing the present muon small wheels (SW) with the “new small wheel(NSW)”, which consists of small thin gap chamber(sTGC) and micromegas (MM). A versatile application-specific integrated circuit(ASIC), the VMM chip, have been developed to read out the signals of the sTGC and MM. The VMM have 64 channels. In order to test the performance of the VMM, a large data transfer rate is needed. Meanwhile, it is required to implement the multi-board interconnection. It is proposed to apply the high-speed Ethernet-based network. We designed and implemented a test platform, the Gigabit Ethernet Module(GEM). The test result shows that the transfer rate can reach up to 926Mbps. Subsequently, the Ethernet is applied in the pad front end board (pFEB) and the thin gap chamber simulation signal generator (SG). This paper introduces the implementation of the GEM platform, as well as its applications. The features of the systems are described in detail.\",\"PeriodicalId\":383702,\"journal\":{\"name\":\"2016 IEEE-NPSS Real Time Conference (RT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE-NPSS Real Time Conference (RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTC.2016.7543078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE-NPSS Real Time Conference (RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTC.2016.7543078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

ATLAS探测器将于2018年升级。ATLAS第一阶段升级的主要重点是一级触发器,将现有的μ子小轮(SW)替换为“新小轮(NSW)”,由小薄间隙腔(sTGC)和微微气体(MM)组成。开发了一种通用专用集成电路(ASIC) VMM芯片,用于读取sTGC和MM的信号,VMM有64通道。为了测试VMM的性能,需要较大的数据传输速率。同时,要求实现多板互连。建议应用基于以太网的高速网络。我们设计并实现了一个测试平台——千兆以太网模块(GEM)。测试结果表明,传输速率可达926Mbps。随后,将以太网应用于pad前端板(pFEB)和薄间隙室仿真信号发生器(SG)中。本文介绍了GEM平台的实现及其应用。详细介绍了系统的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High speed ethernet application for the trigger electronics of the new small wheel
The ATLAS detector will be upgraded in 2018. The main focus of the Phase-I ATLAS upgrade is on the Level-1 trigger, replacing the present muon small wheels (SW) with the “new small wheel(NSW)”, which consists of small thin gap chamber(sTGC) and micromegas (MM). A versatile application-specific integrated circuit(ASIC), the VMM chip, have been developed to read out the signals of the sTGC and MM. The VMM have 64 channels. In order to test the performance of the VMM, a large data transfer rate is needed. Meanwhile, it is required to implement the multi-board interconnection. It is proposed to apply the high-speed Ethernet-based network. We designed and implemented a test platform, the Gigabit Ethernet Module(GEM). The test result shows that the transfer rate can reach up to 926Mbps. Subsequently, the Ethernet is applied in the pad front end board (pFEB) and the thin gap chamber simulation signal generator (SG). This paper introduces the implementation of the GEM platform, as well as its applications. The features of the systems are described in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trigger system for a large area RPC TOF-tracker Performance of the new DAQ system of the CMS experiment for run-2 Phase stabilization over a 3 km optical link with sub-picosecond precision for the AWAKE experiment Real-time resonant magnetic perturbations feedback control system for tearing mode suppression on J-TEXT Benchmarking message queue libraries and network technologies to transport large data volume in the ALICE O system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1