基于局部加权投影回归和扩展卡尔曼滤波的船舶操纵运动在线非参数建模

Wancheng Yue, Junsheng Ren, Weiwei Bai
{"title":"基于局部加权投影回归和扩展卡尔曼滤波的船舶操纵运动在线非参数建模","authors":"Wancheng Yue, Junsheng Ren, Weiwei Bai","doi":"10.1109/DDCLS58216.2023.10166696","DOIUrl":null,"url":null,"abstract":"This paper proposed a method of online non-parameter identification of nonlinear ship motion systems. Firstly, we use Mariner to generate a certain amount of ship motion data to train the LWPR model. Then the ship travels along a set track. During this process, the sensors continuously obtain the distance, radial velocity and azimuth of the ship relative to the ship, and then completes the construction of simulation data. Next, the performance of the algorithm is verified which uses the Kalman filtering framework. Finally, the estimated value is further used for updating the LWPR model to achieve the purpose of online learning, and the updated model will be used for the next prediction. The experimental results show that the online modeling and tracking method proposed in this paper has higher tracking accuracy than the parameter estimation techniques.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online non-parametric modeling for ship maneuvering motion using local weighted projection regression and extended Kalman filter\",\"authors\":\"Wancheng Yue, Junsheng Ren, Weiwei Bai\",\"doi\":\"10.1109/DDCLS58216.2023.10166696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a method of online non-parameter identification of nonlinear ship motion systems. Firstly, we use Mariner to generate a certain amount of ship motion data to train the LWPR model. Then the ship travels along a set track. During this process, the sensors continuously obtain the distance, radial velocity and azimuth of the ship relative to the ship, and then completes the construction of simulation data. Next, the performance of the algorithm is verified which uses the Kalman filtering framework. Finally, the estimated value is further used for updating the LWPR model to achieve the purpose of online learning, and the updated model will be used for the next prediction. The experimental results show that the online modeling and tracking method proposed in this paper has higher tracking accuracy than the parameter estimation techniques.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10166696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种非线性船舶运动系统的在线非参数辨识方法。首先,我们使用Mariner生成一定数量的船舶运动数据来训练LWPR模型。然后船沿着固定的轨道行驶。在此过程中,传感器不断获取船舶相对于船舶的距离、径向速度和方位角,完成仿真数据的构建。其次,利用卡尔曼滤波框架验证了该算法的性能。最后,将估计值进一步用于更新LWPR模型,以达到在线学习的目的,更新后的模型将用于下一次预测。实验结果表明,本文提出的在线建模和跟踪方法比参数估计技术具有更高的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online non-parametric modeling for ship maneuvering motion using local weighted projection regression and extended Kalman filter
This paper proposed a method of online non-parameter identification of nonlinear ship motion systems. Firstly, we use Mariner to generate a certain amount of ship motion data to train the LWPR model. Then the ship travels along a set track. During this process, the sensors continuously obtain the distance, radial velocity and azimuth of the ship relative to the ship, and then completes the construction of simulation data. Next, the performance of the algorithm is verified which uses the Kalman filtering framework. Finally, the estimated value is further used for updating the LWPR model to achieve the purpose of online learning, and the updated model will be used for the next prediction. The experimental results show that the online modeling and tracking method proposed in this paper has higher tracking accuracy than the parameter estimation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on target grab of leg-arm cooperative robot based on vision A Review of Sound Source Localization Research in Three-Dimensional Space Improved Mixed Discrete Particle Swarms based Multi-task Assignment for UAVs Dynamical linearization based PLS modeling and model-free adaptive control Hidden Markov model based finite-time H∞ guaranteed cost control for singular discrete-time Markov jump delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1