基于脊波导的片上单光子源的近统一效率

Yujing Wang, L. Vannucci, S. Burger, N. Gregersen
{"title":"基于脊波导的片上单光子源的近统一效率","authors":"Yujing Wang, L. Vannucci, S. Burger, N. Gregersen","doi":"10.1088/2633-4356/aca8e8","DOIUrl":null,"url":null,"abstract":"\n We report a numerical design procedure for pursuing a near-unity coupling efficiency in quantum dot-cavity ridge waveguide single-photon sources by performing simulations with the finite element method. Our optimum design which is based on a 1D nanobeam cavity, achieves a high source efficiency εxy of 97.7% for an isotropic in-plane dipole, together with a remarkable Purcell factor of 38.6. Such a good performance is mainly attributed to the high index contrast of GaAs/SiO2 and a careful cavity design achieving constructive interference and low scattering losses. Furthermore, we analyze the bottleneck of the proposed platform, which is the mode mismatch between the cavity mode and the Bloch mode in the nanobeam. Accordingly, we present the optimization recipe of an arbitrarily high-efficiency on-chip single-photon source by implementing a taper section, whose high smoothness is beneficial to gradually overcoming the mode mismatch, and therefore leading to a higher Purcell factor and source efficiency. Finally, we see good robustness of the source properties in the taper-nanobeam system under the consideration of realistic fabrication imperfections on the hole variation.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-unity efficiency in ridge waveguide-based, on-chip single-photon sources\",\"authors\":\"Yujing Wang, L. Vannucci, S. Burger, N. Gregersen\",\"doi\":\"10.1088/2633-4356/aca8e8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We report a numerical design procedure for pursuing a near-unity coupling efficiency in quantum dot-cavity ridge waveguide single-photon sources by performing simulations with the finite element method. Our optimum design which is based on a 1D nanobeam cavity, achieves a high source efficiency εxy of 97.7% for an isotropic in-plane dipole, together with a remarkable Purcell factor of 38.6. Such a good performance is mainly attributed to the high index contrast of GaAs/SiO2 and a careful cavity design achieving constructive interference and low scattering losses. Furthermore, we analyze the bottleneck of the proposed platform, which is the mode mismatch between the cavity mode and the Bloch mode in the nanobeam. Accordingly, we present the optimization recipe of an arbitrarily high-efficiency on-chip single-photon source by implementing a taper section, whose high smoothness is beneficial to gradually overcoming the mode mismatch, and therefore leading to a higher Purcell factor and source efficiency. Finally, we see good robustness of the source properties in the taper-nanobeam system under the consideration of realistic fabrication imperfections on the hole variation.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/aca8e8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/aca8e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一个数值设计过程,以追求量子点腔脊波导单光子源的近统一耦合效率与有限元方法进行模拟。我们的优化设计基于一维纳米束腔,实现了97.7%的各向同性面内偶极子源效率εxy,以及38.6的Purcell因子。如此优异的性能主要归功于GaAs/SiO2的高折射率对比和精心的腔体设计,从而实现了相干干涉和低散射损耗。此外,我们还分析了该平台的瓶颈,即纳米梁中的腔模式和布洛赫模式之间的模式不匹配。因此,我们提出了一种任意高效率的片上单光子源的优化方法,通过实现锥形截面,其高平滑度有利于逐步克服模式失配,从而获得更高的Purcell因子和源效率。最后,我们发现在考虑实际制造缺陷对孔洞变化的影响下,锥-纳米梁系统的源特性具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-unity efficiency in ridge waveguide-based, on-chip single-photon sources
We report a numerical design procedure for pursuing a near-unity coupling efficiency in quantum dot-cavity ridge waveguide single-photon sources by performing simulations with the finite element method. Our optimum design which is based on a 1D nanobeam cavity, achieves a high source efficiency εxy of 97.7% for an isotropic in-plane dipole, together with a remarkable Purcell factor of 38.6. Such a good performance is mainly attributed to the high index contrast of GaAs/SiO2 and a careful cavity design achieving constructive interference and low scattering losses. Furthermore, we analyze the bottleneck of the proposed platform, which is the mode mismatch between the cavity mode and the Bloch mode in the nanobeam. Accordingly, we present the optimization recipe of an arbitrarily high-efficiency on-chip single-photon source by implementing a taper section, whose high smoothness is beneficial to gradually overcoming the mode mismatch, and therefore leading to a higher Purcell factor and source efficiency. Finally, we see good robustness of the source properties in the taper-nanobeam system under the consideration of realistic fabrication imperfections on the hole variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen-vacancy centers in diamond: discovery of additional electronic states Fabrication of tips for scanning probe magnetometry by diamond growth GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots Quantum materials engineering by structured cavity vacuum fluctuations Structural formation yield of GeV centers from implanted Ge in diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1