用于鲁棒视觉跟踪的灵活结构化稀疏表示

Tianxiang Bai, Youfu Li, Yazhe Tang
{"title":"用于鲁棒视觉跟踪的灵活结构化稀疏表示","authors":"Tianxiang Bai, Youfu Li, Yazhe Tang","doi":"10.1109/MFI.2012.6343073","DOIUrl":null,"url":null,"abstract":"In this work, we propose a robust and flexible appearance model based on the structured sparse representation framework. In our method, we model the complex nonlinear appearance manifold and occlusions as a sparse linear combination of structured union of subspaces in a basis library consisting of multiple learned low dimensional subspaces and a partitioned occlusion template set. In order to enhance the discriminative power of the model, a number of clustered background subspaces are also added into the basis library and updated during tracking. With the Block Orthogonal Matching Pursuit (BOMP) algorithm, we show that the new structured sparse representation based appearance model facilitates the tracking performance compared with the prototype model and other state of the art tracking algorithms.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flexible structured sparse representation for robust visual tracking\",\"authors\":\"Tianxiang Bai, Youfu Li, Yazhe Tang\",\"doi\":\"10.1109/MFI.2012.6343073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a robust and flexible appearance model based on the structured sparse representation framework. In our method, we model the complex nonlinear appearance manifold and occlusions as a sparse linear combination of structured union of subspaces in a basis library consisting of multiple learned low dimensional subspaces and a partitioned occlusion template set. In order to enhance the discriminative power of the model, a number of clustered background subspaces are also added into the basis library and updated during tracking. With the Block Orthogonal Matching Pursuit (BOMP) algorithm, we show that the new structured sparse representation based appearance model facilitates the tracking performance compared with the prototype model and other state of the art tracking algorithms.\",\"PeriodicalId\":103145,\"journal\":{\"name\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2012.6343073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们提出了一个基于结构化稀疏表示框架的鲁棒灵活的外观模型。在我们的方法中,我们将复杂的非线性外观流形和遮挡建模为由多个学习的低维子空间和分割的遮挡模板集组成的基库中的子空间的结构化联合的稀疏线性组合。为了增强模型的判别能力,在基库中加入了多个聚类背景子空间,并在跟踪过程中进行更新。通过块正交匹配追踪(BOMP)算法,我们证明了与原型模型和其他先进的跟踪算法相比,新的基于结构化稀疏表示的外观模型更有利于跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible structured sparse representation for robust visual tracking
In this work, we propose a robust and flexible appearance model based on the structured sparse representation framework. In our method, we model the complex nonlinear appearance manifold and occlusions as a sparse linear combination of structured union of subspaces in a basis library consisting of multiple learned low dimensional subspaces and a partitioned occlusion template set. In order to enhance the discriminative power of the model, a number of clustered background subspaces are also added into the basis library and updated during tracking. With the Block Orthogonal Matching Pursuit (BOMP) algorithm, we show that the new structured sparse representation based appearance model facilitates the tracking performance compared with the prototype model and other state of the art tracking algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DP-Fusion: A generic framework for online multi sensor recognition Design of double ducted tilting SUAV navigation system based on multi-sensor information fusion Modeling and control architecture for the competitive networked robot system based on POMDP A sensor fusion approach for localization with cumulative error elimination On Active Sensing methods for localization scenarios with range-based measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1