水中硝酸盐污染的电化学阻抗检测

Li Xie, A. I. Zia, S. Mukhopadhyay, L. Burkitt
{"title":"水中硝酸盐污染的电化学阻抗检测","authors":"Li Xie, A. I. Zia, S. Mukhopadhyay, L. Burkitt","doi":"10.1109/ICSENST.2015.7438403","DOIUrl":null,"url":null,"abstract":"This paper describes the design and development of a sensing system to detect the nitrate concentration by using planar interdigital sensor immersed in the water sample. Water samples were prepared containing two different salts: Sodium Nitrate (NaNO3) and Ammonium Nitrate (NH4NO3) with the concentration ranging from 0.02 PPM to 10 PPM by using the serial dilution method. The water sample was tested by both the commercial equipment (LCR meter) and designed system. Although a difference was observed between these two results, the designed system shows a good linear relationship between the low concentration (0.02 - 0.5 PPM) of the water solution and the real part of the impedance. However, the relationship was changed from linear to logarithmic scale at the high concentration (0.05 - 10 PPM) of the water solution. The computational formula of concentration was formed from these results. This system has a potential to be used in-situ nitrate contamination detection with real-time monitoring.","PeriodicalId":375376,"journal":{"name":"2015 9th International Conference on Sensing Technology (ICST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Electrochemical impedimetric sensing of nitrate contamination in water\",\"authors\":\"Li Xie, A. I. Zia, S. Mukhopadhyay, L. Burkitt\",\"doi\":\"10.1109/ICSENST.2015.7438403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design and development of a sensing system to detect the nitrate concentration by using planar interdigital sensor immersed in the water sample. Water samples were prepared containing two different salts: Sodium Nitrate (NaNO3) and Ammonium Nitrate (NH4NO3) with the concentration ranging from 0.02 PPM to 10 PPM by using the serial dilution method. The water sample was tested by both the commercial equipment (LCR meter) and designed system. Although a difference was observed between these two results, the designed system shows a good linear relationship between the low concentration (0.02 - 0.5 PPM) of the water solution and the real part of the impedance. However, the relationship was changed from linear to logarithmic scale at the high concentration (0.05 - 10 PPM) of the water solution. The computational formula of concentration was formed from these results. This system has a potential to be used in-situ nitrate contamination detection with real-time monitoring.\",\"PeriodicalId\":375376,\"journal\":{\"name\":\"2015 9th International Conference on Sensing Technology (ICST)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Sensing Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENST.2015.7438403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2015.7438403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种浸入水样中的平面数字间传感器检测硝酸盐浓度的传感系统的设计与研制。采用连续稀释法制备了硝酸钠(NaNO3)和硝酸铵(NH4NO3)两种不同盐的水样,浓度范围为0.02 PPM ~ 10 PPM。用商用仪器(LCR仪)和设计的系统对水样进行了测试。虽然这两个结果之间存在差异,但设计的系统显示低浓度(0.02 - 0.5 PPM)水溶液与阻抗实部之间存在良好的线性关系。然而,在高浓度(0.05 ~ 10 PPM)的水溶液中,关系由线性变为对数尺度。根据这些结果,形成了浓度的计算公式。该系统具有应用于硝酸盐污染现场实时监测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical impedimetric sensing of nitrate contamination in water
This paper describes the design and development of a sensing system to detect the nitrate concentration by using planar interdigital sensor immersed in the water sample. Water samples were prepared containing two different salts: Sodium Nitrate (NaNO3) and Ammonium Nitrate (NH4NO3) with the concentration ranging from 0.02 PPM to 10 PPM by using the serial dilution method. The water sample was tested by both the commercial equipment (LCR meter) and designed system. Although a difference was observed between these two results, the designed system shows a good linear relationship between the low concentration (0.02 - 0.5 PPM) of the water solution and the real part of the impedance. However, the relationship was changed from linear to logarithmic scale at the high concentration (0.05 - 10 PPM) of the water solution. The computational formula of concentration was formed from these results. This system has a potential to be used in-situ nitrate contamination detection with real-time monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The development and evaluation of an arm usage coach for Stroke survivors Uncertainty analysis of a vibrating-wire system for magnetic axes localization Magnetic field shaping for improved 1-D linear position measurement Real-time detection of residual antibiotics concentration with microwave cavity and planar EM sensors Ambient temperature effect on Amorphous Silicon (A-Si) Photovoltaic module using sensing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1