基于模糊可能性组织分割和SVM分类的阿尔茨海默病计算机辅助诊断系统

L. Lazli, M. Boukadoum, O. Ait Mohamed
{"title":"基于模糊可能性组织分割和SVM分类的阿尔茨海默病计算机辅助诊断系统","authors":"L. Lazli, M. Boukadoum, O. Ait Mohamed","doi":"10.1109/LSC.2018.8572122","DOIUrl":null,"url":null,"abstract":"We describe a computer-aided diagnosis (CAD) system for discriminating patients suffering from Alzheimer's disease (AD) dementia and healthy patients. It is based on: 1) a clustering process to assess white matter, gray matter and cerebrospinal fluid volumes from noisy anatomical magnetic resonance (MR) and functional positron emission tomography (PET) brain images11The MR and PET data used in this work were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).; 2) a classification process that distinguishes the brain images of normal and AD patients. The clustering stage consists of three steps: First, the fuzzy c-means (FCM) algorithm is used for a fuzzy partition of the initial class centroids. Second, fuzzy tissue maps are computed using a possibilistic C-means (PCM) algorithm that uses the FCM partition to obtain the final image clusters. The final segmentation is then made to delimit the brain tissue volumes. For the classification stage, a support vector machine (SVM) is used with different kernel functions. Validating the proposed CAD system on the MRI and PET images of 45 AD and 50 healthy brains, of subjects aged between 55 and 90 years, shows better sensitivity, specificity and accuracy in comparison to three alternative approaches, namely FCM, PCM and VAF (Voxels-As-Features). The accuracy rates for the noisiest images (20% of noise) were 75% for MRI and 73% for PET scan, compared to 71 % and 70,2%, 68.5% and 67%, and 65 % and 64.7 % with the three other approaches, respectively.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Computer-Aided Diagnosis System for Alzheimer's Disease Using Fuzzy-Possibilistic Tissue Segmentation and SVM Classification\",\"authors\":\"L. Lazli, M. Boukadoum, O. Ait Mohamed\",\"doi\":\"10.1109/LSC.2018.8572122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a computer-aided diagnosis (CAD) system for discriminating patients suffering from Alzheimer's disease (AD) dementia and healthy patients. It is based on: 1) a clustering process to assess white matter, gray matter and cerebrospinal fluid volumes from noisy anatomical magnetic resonance (MR) and functional positron emission tomography (PET) brain images11The MR and PET data used in this work were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).; 2) a classification process that distinguishes the brain images of normal and AD patients. The clustering stage consists of three steps: First, the fuzzy c-means (FCM) algorithm is used for a fuzzy partition of the initial class centroids. Second, fuzzy tissue maps are computed using a possibilistic C-means (PCM) algorithm that uses the FCM partition to obtain the final image clusters. The final segmentation is then made to delimit the brain tissue volumes. For the classification stage, a support vector machine (SVM) is used with different kernel functions. Validating the proposed CAD system on the MRI and PET images of 45 AD and 50 healthy brains, of subjects aged between 55 and 90 years, shows better sensitivity, specificity and accuracy in comparison to three alternative approaches, namely FCM, PCM and VAF (Voxels-As-Features). The accuracy rates for the noisiest images (20% of noise) were 75% for MRI and 73% for PET scan, compared to 71 % and 70,2%, 68.5% and 67%, and 65 % and 64.7 % with the three other approaches, respectively.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们描述了一个计算机辅助诊断(CAD)系统,用于区分患有阿尔茨海默病(AD)痴呆的患者和健康患者。它基于:1)从嘈杂的解剖磁共振(MR)和功能性正电子发射断层扫描(PET)脑图像中评估白质、灰质和脑脊液体积的聚类过程11本工作中使用的MR和PET数据来自阿尔茨海默病神经成像倡议(ADNI)数据库(http://adni.loni.usc.edu/);2)区分正常和AD患者脑图像的分类过程。聚类阶段包括三个步骤:首先,使用模糊c均值(FCM)算法对初始类质心进行模糊划分;其次,使用可能性c均值(PCM)算法计算模糊组织图,该算法使用FCM划分获得最终的图像聚类。然后进行最后的分割,以划定脑组织体积。在分类阶段,使用具有不同核函数的支持向量机(SVM)。在45名AD患者和50名年龄在55岁至90岁之间的健康大脑的MRI和PET图像上验证了所提出的CAD系统,与FCM, PCM和VAF (Voxels-As-Features)三种替代方法相比,显示出更好的灵敏度,特异性和准确性。对于噪声最大的图像(噪声的20%),MRI的准确率为75%,PET扫描的准确率为73%,而其他三种方法的准确率分别为71%和70%,2%,68.5%和67%,65%和64.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer-Aided Diagnosis System for Alzheimer's Disease Using Fuzzy-Possibilistic Tissue Segmentation and SVM Classification
We describe a computer-aided diagnosis (CAD) system for discriminating patients suffering from Alzheimer's disease (AD) dementia and healthy patients. It is based on: 1) a clustering process to assess white matter, gray matter and cerebrospinal fluid volumes from noisy anatomical magnetic resonance (MR) and functional positron emission tomography (PET) brain images11The MR and PET data used in this work were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).; 2) a classification process that distinguishes the brain images of normal and AD patients. The clustering stage consists of three steps: First, the fuzzy c-means (FCM) algorithm is used for a fuzzy partition of the initial class centroids. Second, fuzzy tissue maps are computed using a possibilistic C-means (PCM) algorithm that uses the FCM partition to obtain the final image clusters. The final segmentation is then made to delimit the brain tissue volumes. For the classification stage, a support vector machine (SVM) is used with different kernel functions. Validating the proposed CAD system on the MRI and PET images of 45 AD and 50 healthy brains, of subjects aged between 55 and 90 years, shows better sensitivity, specificity and accuracy in comparison to three alternative approaches, namely FCM, PCM and VAF (Voxels-As-Features). The accuracy rates for the noisiest images (20% of noise) were 75% for MRI and 73% for PET scan, compared to 71 % and 70,2%, 68.5% and 67%, and 65 % and 64.7 % with the three other approaches, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Veterinary Medicine Engineering Challenges and Opportunities Kinematic Data Clustering for Healthy Knee Gait Characterization A Nanosurface Microfluidic Device for Capture and Detection of Bacteria A Novel Fully Differential NMR Transciever Automated Enumeration and Classification of Bacteria in Fluorescent Microscopy Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1