使用自动无标记增强现实系统为维护操作提供指导

H. Álvarez, I. Aguinaga, D. Borro
{"title":"使用自动无标记增强现实系统为维护操作提供指导","authors":"H. Álvarez, I. Aguinaga, D. Borro","doi":"10.1109/ISMAR.2011.6092385","DOIUrl":null,"url":null,"abstract":"This paper proposes a new real-time Augmented Reality based tool to help in disassembly for maintenance operations. This tool provides workers with augmented instructions to perform maintenance tasks more efficiently. Our prototype is a complete framework characterized by its capability to automatically generate all the necessary data from input based on untextured 3D triangle meshes, without requiring additional user intervention. An automatic offline stage extracts the basic geometric features. These are used during the online stage to compute the camera pose from a monocular image. Thus, we can handle the usual textureless 3D models used in industrial applications. A self-supplied and robust markerless tracking system that combines an edge tracker, a point based tracker and a 3D particle filter has also been designed to continuously update the camera pose. Our framework incorporates an automatic path-planning module. During the offline stage, the assembly/disassembly sequence is automatically deduced from the 3D model geometry. This information is used to generate the disassembly instructions for workers.","PeriodicalId":298757,"journal":{"name":"2011 10th IEEE International Symposium on Mixed and Augmented Reality","volume":"21 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Providing guidance for maintenance operations using automatic markerless Augmented Reality system\",\"authors\":\"H. Álvarez, I. Aguinaga, D. Borro\",\"doi\":\"10.1109/ISMAR.2011.6092385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new real-time Augmented Reality based tool to help in disassembly for maintenance operations. This tool provides workers with augmented instructions to perform maintenance tasks more efficiently. Our prototype is a complete framework characterized by its capability to automatically generate all the necessary data from input based on untextured 3D triangle meshes, without requiring additional user intervention. An automatic offline stage extracts the basic geometric features. These are used during the online stage to compute the camera pose from a monocular image. Thus, we can handle the usual textureless 3D models used in industrial applications. A self-supplied and robust markerless tracking system that combines an edge tracker, a point based tracker and a 3D particle filter has also been designed to continuously update the camera pose. Our framework incorporates an automatic path-planning module. During the offline stage, the assembly/disassembly sequence is automatically deduced from the 3D model geometry. This information is used to generate the disassembly instructions for workers.\",\"PeriodicalId\":298757,\"journal\":{\"name\":\"2011 10th IEEE International Symposium on Mixed and Augmented Reality\",\"volume\":\"21 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th IEEE International Symposium on Mixed and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2011.6092385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th IEEE International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2011.6092385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

本文提出了一种新的实时增强现实工具,以帮助拆卸维修操作。该工具为工作人员提供了增强的指令,以更有效地执行维护任务。我们的原型是一个完整的框架,其特点是能够根据无纹理的3D三角形网格自动生成所有必要的数据,而不需要额外的用户干预。自动脱机阶段提取基本几何特征。这些在在线阶段用于从单目图像计算相机姿势。因此,我们可以处理通常在工业应用中使用的无纹理3D模型。一个自给自足和强大的无标记跟踪系统,结合了一个边缘跟踪器,一个基于点的跟踪器和一个3D粒子过滤器,也被设计为不断更新相机姿态。我们的框架包含一个自动路径规划模块。在离线阶段,从三维模型几何图形中自动推导出装配/拆卸顺序。该信息用于为工人生成拆卸指令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Providing guidance for maintenance operations using automatic markerless Augmented Reality system
This paper proposes a new real-time Augmented Reality based tool to help in disassembly for maintenance operations. This tool provides workers with augmented instructions to perform maintenance tasks more efficiently. Our prototype is a complete framework characterized by its capability to automatically generate all the necessary data from input based on untextured 3D triangle meshes, without requiring additional user intervention. An automatic offline stage extracts the basic geometric features. These are used during the online stage to compute the camera pose from a monocular image. Thus, we can handle the usual textureless 3D models used in industrial applications. A self-supplied and robust markerless tracking system that combines an edge tracker, a point based tracker and a 3D particle filter has also been designed to continuously update the camera pose. Our framework incorporates an automatic path-planning module. During the offline stage, the assembly/disassembly sequence is automatically deduced from the 3D model geometry. This information is used to generate the disassembly instructions for workers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Indoor positioning and navigation for mobile AR Light factorization for mixed-frequency shadows in augmented reality 3D high dynamic range display system Adaptive camera-based color mapping for mixed-reality applications Image-based clothes transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1