UV-B效应的初步结果纳入GOSSYM模型

Xinli Wang, Wei Gao, K. R. Reddy, J. Slusser, Min Xu
{"title":"UV-B效应的初步结果纳入GOSSYM模型","authors":"Xinli Wang, Wei Gao, K. R. Reddy, J. Slusser, Min Xu","doi":"10.1117/12.681446","DOIUrl":null,"url":null,"abstract":"Field experiments and laboratory tests have shown multiple effects of enhanced ultraviolet-B (UV-B) radiation on cotton growth, development, and yield. Adverse effects include development of chlorotic and necrotic patches on leaves, reductions in total leaf area, plant height, photosynthesis, and yield. However, little work has been carried out to incorporate these experimental results into a simulation model and to estimate the effects of UV-B radiation under field conditions with varied environments and management practices. This study incorporates experimental results of UV-B effects on cotton crop into a cotton simulation model, GOSSYM, which is being used widely in various applications. In this work, first modules were modified to incorporate the effects of UV-B radiation on canopy photosynthesis, leaf area expansion, and stem and branch elongation. Then, the modified model was used to test the validity of model assumptions and algorithms on independent experimental data sets. Finally, preliminary studies were performed to simulate the effects of UV-B radiation in the field conditions at Stoneville, Mississippi using 30-year (1964-1993) climate data. Simulation results agreed well with experimental measurements, proving the validation of the model. Our results suggest that cotton lint yield declined with increased UV-B radiation. The reductions were 20% when UV-B irradiance was 12 kJ m-2 under irrigated conditions. Similar reductions in yield were predicted at lower UV-B radiation (11 kJ m-2) under rain-fed conditions. The modified model will be useful to simulate the impacts of UV-B radiation on cotton growth and yield under current and future climatic conditions and to suggest management options to mitigate the adverse effects.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preliminary results of a UV-B effect incorporated GOSSYM model\",\"authors\":\"Xinli Wang, Wei Gao, K. R. Reddy, J. Slusser, Min Xu\",\"doi\":\"10.1117/12.681446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field experiments and laboratory tests have shown multiple effects of enhanced ultraviolet-B (UV-B) radiation on cotton growth, development, and yield. Adverse effects include development of chlorotic and necrotic patches on leaves, reductions in total leaf area, plant height, photosynthesis, and yield. However, little work has been carried out to incorporate these experimental results into a simulation model and to estimate the effects of UV-B radiation under field conditions with varied environments and management practices. This study incorporates experimental results of UV-B effects on cotton crop into a cotton simulation model, GOSSYM, which is being used widely in various applications. In this work, first modules were modified to incorporate the effects of UV-B radiation on canopy photosynthesis, leaf area expansion, and stem and branch elongation. Then, the modified model was used to test the validity of model assumptions and algorithms on independent experimental data sets. Finally, preliminary studies were performed to simulate the effects of UV-B radiation in the field conditions at Stoneville, Mississippi using 30-year (1964-1993) climate data. Simulation results agreed well with experimental measurements, proving the validation of the model. Our results suggest that cotton lint yield declined with increased UV-B radiation. The reductions were 20% when UV-B irradiance was 12 kJ m-2 under irrigated conditions. Similar reductions in yield were predicted at lower UV-B radiation (11 kJ m-2) under rain-fed conditions. The modified model will be useful to simulate the impacts of UV-B radiation on cotton growth and yield under current and future climatic conditions and to suggest management options to mitigate the adverse effects.\",\"PeriodicalId\":406438,\"journal\":{\"name\":\"SPIE Optics + Photonics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.681446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.681446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

田间试验和室内试验表明,增强紫外线b (UV-B)辐射对棉花生长发育和产量有多重影响。不利影响包括叶片上的褪绿和坏死斑块的形成,总叶面积、株高、光合作用和产量的减少。然而,很少有工作将这些实验结果纳入模拟模型,并估计在不同环境和管理做法的现场条件下UV-B辐射的影响。本研究将UV-B对棉花作物影响的实验结果纳入棉花模拟模型GOSSYM中,该模型在各种应用中得到广泛应用。在这项工作中,第一个模块进行了修改,以纳入UV-B辐射对冠层光合作用、叶面积扩张和茎枝伸长的影响。然后,利用改进后的模型在独立的实验数据集上检验模型假设和算法的有效性。最后,利用30年(1964-1993)气候数据,对密西西比州斯通维尔的野外条件下UV-B辐射的影响进行了初步模拟研究。仿真结果与实验结果吻合较好,验证了模型的有效性。结果表明,随着UV-B辐射的增加,棉绒产量下降。在灌溉条件下,当UV-B辐照度为12 kJ - m-2时,减少20%。在雨养条件下,较低的UV-B辐射(11 kJ - m-2)预计产量也有类似的减少。修正后的模型将有助于模拟当前和未来气候条件下UV-B辐射对棉花生长和产量的影响,并提出减轻不利影响的管理方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary results of a UV-B effect incorporated GOSSYM model
Field experiments and laboratory tests have shown multiple effects of enhanced ultraviolet-B (UV-B) radiation on cotton growth, development, and yield. Adverse effects include development of chlorotic and necrotic patches on leaves, reductions in total leaf area, plant height, photosynthesis, and yield. However, little work has been carried out to incorporate these experimental results into a simulation model and to estimate the effects of UV-B radiation under field conditions with varied environments and management practices. This study incorporates experimental results of UV-B effects on cotton crop into a cotton simulation model, GOSSYM, which is being used widely in various applications. In this work, first modules were modified to incorporate the effects of UV-B radiation on canopy photosynthesis, leaf area expansion, and stem and branch elongation. Then, the modified model was used to test the validity of model assumptions and algorithms on independent experimental data sets. Finally, preliminary studies were performed to simulate the effects of UV-B radiation in the field conditions at Stoneville, Mississippi using 30-year (1964-1993) climate data. Simulation results agreed well with experimental measurements, proving the validation of the model. Our results suggest that cotton lint yield declined with increased UV-B radiation. The reductions were 20% when UV-B irradiance was 12 kJ m-2 under irrigated conditions. Similar reductions in yield were predicted at lower UV-B radiation (11 kJ m-2) under rain-fed conditions. The modified model will be useful to simulate the impacts of UV-B radiation on cotton growth and yield under current and future climatic conditions and to suggest management options to mitigate the adverse effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural network for image-to-image control of optical tweezers Atmospheric turbulence simulation using liquid crystal spatial light modulators Atmospheric simulation using a liquid crystal wavefront-controlling device Spectral sensitivity of the circadian system Generating entangled states of two ququarts using linear optical elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1