演示:用于雾连续体的RAINBOW分析堆栈

Moysis Symeonides, Demetris Trihinas, Joanna Georgiou, Michalis Kasioulis, G. Pallis, M. Dikaiakos, Theodoros Toliopoulos, A. Michailidou, A. Gounaris
{"title":"演示:用于雾连续体的RAINBOW分析堆栈","authors":"Moysis Symeonides, Demetris Trihinas, Joanna Georgiou, Michalis Kasioulis, G. Pallis, M. Dikaiakos, Theodoros Toliopoulos, A. Michailidou, A. Gounaris","doi":"10.1109/ISCC55528.2022.9913026","DOIUrl":null,"url":null,"abstract":"With the proliferation of raw Internet of Things (IoTs) data, Fog Computing is emerging as a computing paradigm for delay-sensitive streaming analytics with operators deploying big data distributed engines on Fog resources [1]. Nevertheless, the current (Cloud-based) distributed analytics solutions are unaware of the unique characteristics of Fog realms. For instance, task placement algorithms consider homogeneous underlying resources without considering the Fog nodes' heterogeneity and the non-uniform network connections, resulting in sub-optimal processing performance. Moreover, data quality can play an important role, where corrupted data, and network uncertainty may lead to less useful results. In turn, energy consumption can critically impact the overall cost and liveness of the underlying processing infrastructure. Specifically, scheduling tasks on nodes with energy-hungry profiles or battery-powered devices may temporarily be beneficial for the performance, but it may increase the overall cost, or/and the battery-powered devices may not be available when needed. A Fog-enabled analytics stack must allow users to optimize Fog-specific indicators or trade-offs among them. For instance, users may sacrifice a portion of the execution performance to minimize energy consumption or vice versa. Except for the performance issues raised by Fog, the state-of-the-art distributed processing engines offer only low-level procedural programming interfaces with operators facing a steep learning curve to master them. So, query abstractions are crucial for minimizing the deployment time, errors, and debugging.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demo: The RAINBOW Analytics Stack for the Fog Continuum\",\"authors\":\"Moysis Symeonides, Demetris Trihinas, Joanna Georgiou, Michalis Kasioulis, G. Pallis, M. Dikaiakos, Theodoros Toliopoulos, A. Michailidou, A. Gounaris\",\"doi\":\"10.1109/ISCC55528.2022.9913026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of raw Internet of Things (IoTs) data, Fog Computing is emerging as a computing paradigm for delay-sensitive streaming analytics with operators deploying big data distributed engines on Fog resources [1]. Nevertheless, the current (Cloud-based) distributed analytics solutions are unaware of the unique characteristics of Fog realms. For instance, task placement algorithms consider homogeneous underlying resources without considering the Fog nodes' heterogeneity and the non-uniform network connections, resulting in sub-optimal processing performance. Moreover, data quality can play an important role, where corrupted data, and network uncertainty may lead to less useful results. In turn, energy consumption can critically impact the overall cost and liveness of the underlying processing infrastructure. Specifically, scheduling tasks on nodes with energy-hungry profiles or battery-powered devices may temporarily be beneficial for the performance, but it may increase the overall cost, or/and the battery-powered devices may not be available when needed. A Fog-enabled analytics stack must allow users to optimize Fog-specific indicators or trade-offs among them. For instance, users may sacrifice a portion of the execution performance to minimize energy consumption or vice versa. Except for the performance issues raised by Fog, the state-of-the-art distributed processing engines offer only low-level procedural programming interfaces with operators facing a steep learning curve to master them. So, query abstractions are crucial for minimizing the deployment time, errors, and debugging.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9913026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9913026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着原始物联网(iot)数据的激增,雾计算正在成为延迟敏感流分析的计算范式,运营商在雾资源上部署大数据分布式引擎[1]。然而,当前的(基于云的)分布式分析解决方案并没有意识到雾域的独特特征。例如,任务放置算法考虑同构的底层资源,而没有考虑雾节点的异构性和网络连接的非均匀性,导致处理性能次优。此外,数据质量可以发挥重要作用,其中损坏的数据和网络的不确定性可能导致不太有用的结果。反过来,能源消耗会严重影响底层处理基础设施的总体成本和活力。具体来说,在具有高能耗配置文件或电池供电设备的节点上调度任务可能暂时有利于性能,但它可能会增加总体成本,或者/并且电池供电的设备可能在需要时不可用。支持fog的分析堆栈必须允许用户优化特定于fog的指标或在它们之间进行权衡。例如,用户可能会牺牲一部分执行性能来最小化能耗,反之亦然。除了Fog引起的性能问题外,最先进的分布式处理引擎只提供低级的过程编程接口,操作人员要掌握它们需要陡峭的学习曲线。因此,查询抽象对于最小化部署时间、错误和调试至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demo: The RAINBOW Analytics Stack for the Fog Continuum
With the proliferation of raw Internet of Things (IoTs) data, Fog Computing is emerging as a computing paradigm for delay-sensitive streaming analytics with operators deploying big data distributed engines on Fog resources [1]. Nevertheless, the current (Cloud-based) distributed analytics solutions are unaware of the unique characteristics of Fog realms. For instance, task placement algorithms consider homogeneous underlying resources without considering the Fog nodes' heterogeneity and the non-uniform network connections, resulting in sub-optimal processing performance. Moreover, data quality can play an important role, where corrupted data, and network uncertainty may lead to less useful results. In turn, energy consumption can critically impact the overall cost and liveness of the underlying processing infrastructure. Specifically, scheduling tasks on nodes with energy-hungry profiles or battery-powered devices may temporarily be beneficial for the performance, but it may increase the overall cost, or/and the battery-powered devices may not be available when needed. A Fog-enabled analytics stack must allow users to optimize Fog-specific indicators or trade-offs among them. For instance, users may sacrifice a portion of the execution performance to minimize energy consumption or vice versa. Except for the performance issues raised by Fog, the state-of-the-art distributed processing engines offer only low-level procedural programming interfaces with operators facing a steep learning curve to master them. So, query abstractions are crucial for minimizing the deployment time, errors, and debugging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1