二维液体射流的流动与破裂实验研究

A. Jaberi, M. Tadjfar
{"title":"二维液体射流的流动与破裂实验研究","authors":"A. Jaberi, M. Tadjfar","doi":"10.1115/ajkfluids2019-4642","DOIUrl":null,"url":null,"abstract":"\n Studying of injectors with non-circular geometries has recently come to the spotlight of researchers as a potential technique to improve the liquid injection characteristics of different systems. In this work, the flow physics and breakup of two-dimensional liquid jets issued from flat slits into still air were experimentally investigated. Three injectors with aspect ratios of 30, 60 and 90 and thickness of 0.35 mm were manufactured to obtain two-dimensional liquid flow at the nozzle exit. The tests were performed for a wide range of volume flow rate, varying from 10 L/h to 240 L/h. Backlight shadowgraphy and high speed photography were employed to capture the flow dynamics of the jets. In order to capture every detail of the flow, photos of the liquid jet were taken from two views with 90° from each other. Using the visualizations, different regimes of the jet flow were explored and a regime map was proposed to distinguish these regimes based on the non-dimensional parameters of the liquid jet. Moreover, quantitative description of the main features of jet flows were obtained using an in-house image processing program. Measurements of different parameters including convergence length, maximum width, breakup length, sheet thickness to name a few, were conducted.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Investigation on Flow and Breakup of Two-Dimensional Liquid Jets\",\"authors\":\"A. Jaberi, M. Tadjfar\",\"doi\":\"10.1115/ajkfluids2019-4642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Studying of injectors with non-circular geometries has recently come to the spotlight of researchers as a potential technique to improve the liquid injection characteristics of different systems. In this work, the flow physics and breakup of two-dimensional liquid jets issued from flat slits into still air were experimentally investigated. Three injectors with aspect ratios of 30, 60 and 90 and thickness of 0.35 mm were manufactured to obtain two-dimensional liquid flow at the nozzle exit. The tests were performed for a wide range of volume flow rate, varying from 10 L/h to 240 L/h. Backlight shadowgraphy and high speed photography were employed to capture the flow dynamics of the jets. In order to capture every detail of the flow, photos of the liquid jet were taken from two views with 90° from each other. Using the visualizations, different regimes of the jet flow were explored and a regime map was proposed to distinguish these regimes based on the non-dimensional parameters of the liquid jet. Moreover, quantitative description of the main features of jet flows were obtained using an in-house image processing program. Measurements of different parameters including convergence length, maximum width, breakup length, sheet thickness to name a few, were conducted.\",\"PeriodicalId\":322380,\"journal\":{\"name\":\"Volume 5: Multiphase Flow\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Multiphase Flow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-4642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,研究非圆几何形状的喷射器作为一种改善不同系统液体喷射特性的潜在技术受到了研究人员的关注。本文研究了二维液体射流从平面狭缝进入静止空气的流动物理特性和破裂过程。制作了三个喷射器,长径比分别为30、60和90,厚度为0.35 mm,以获得喷嘴出口的二维液体流动。测试的体积流量范围很广,从10 L/h到240 L/h。背光阴影摄影和高速摄影被用来捕捉射流的流动动力学。为了捕捉流动的每一个细节,液体射流的照片从两个角度拍摄,彼此90°。利用可视化技术,研究了射流的不同流态,并提出了基于液体射流无量纲参数的流态图来区分这些流态。此外,利用内部图像处理程序对射流的主要特征进行了定量描述。对收敛长度、最大宽度、破碎长度、薄板厚度等参数进行了测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Investigation on Flow and Breakup of Two-Dimensional Liquid Jets
Studying of injectors with non-circular geometries has recently come to the spotlight of researchers as a potential technique to improve the liquid injection characteristics of different systems. In this work, the flow physics and breakup of two-dimensional liquid jets issued from flat slits into still air were experimentally investigated. Three injectors with aspect ratios of 30, 60 and 90 and thickness of 0.35 mm were manufactured to obtain two-dimensional liquid flow at the nozzle exit. The tests were performed for a wide range of volume flow rate, varying from 10 L/h to 240 L/h. Backlight shadowgraphy and high speed photography were employed to capture the flow dynamics of the jets. In order to capture every detail of the flow, photos of the liquid jet were taken from two views with 90° from each other. Using the visualizations, different regimes of the jet flow were explored and a regime map was proposed to distinguish these regimes based on the non-dimensional parameters of the liquid jet. Moreover, quantitative description of the main features of jet flows were obtained using an in-house image processing program. Measurements of different parameters including convergence length, maximum width, breakup length, sheet thickness to name a few, were conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1