来自泊松点过程观测的压缩数据聚合

Giancarlo Pastor, I. Norros, R. Jäntti, A. Caamaño
{"title":"来自泊松点过程观测的压缩数据聚合","authors":"Giancarlo Pastor, I. Norros, R. Jäntti, A. Caamaño","doi":"10.1109/ISWCS.2015.7454307","DOIUrl":null,"url":null,"abstract":"This paper introduces Stochastic Compressive Data Aggregation (S-CDA) for wireless sensor networks (WSN) under random deployments. The Poisson point process (PPP) models the random deployment, and at the same time, allows the efficient implementation of an adequate sparsifying matrix, the random discrete Fourier transform (RDFT). The signal recovery is based on the RDFT which reveals the frequency content of smooth signals, such as temperature or humidity maps, which consist of few frequency components. The recovery methods are based on the accelerated iterative hard thresholding (AIHT) which sets all but the largest (in magnitude) frequency components to zero. The adoption of the PPP allows to analyze the communication and compression aspects of S-CDA using previous results from stochastic geometry and compressed sensing, respectively.","PeriodicalId":383105,"journal":{"name":"2015 International Symposium on Wireless Communication Systems (ISWCS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Compressive Data Aggregation from Poisson point process observations\",\"authors\":\"Giancarlo Pastor, I. Norros, R. Jäntti, A. Caamaño\",\"doi\":\"10.1109/ISWCS.2015.7454307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Stochastic Compressive Data Aggregation (S-CDA) for wireless sensor networks (WSN) under random deployments. The Poisson point process (PPP) models the random deployment, and at the same time, allows the efficient implementation of an adequate sparsifying matrix, the random discrete Fourier transform (RDFT). The signal recovery is based on the RDFT which reveals the frequency content of smooth signals, such as temperature or humidity maps, which consist of few frequency components. The recovery methods are based on the accelerated iterative hard thresholding (AIHT) which sets all but the largest (in magnitude) frequency components to zero. The adoption of the PPP allows to analyze the communication and compression aspects of S-CDA using previous results from stochastic geometry and compressed sensing, respectively.\",\"PeriodicalId\":383105,\"journal\":{\"name\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2015.7454307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2015.7454307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了随机部署下无线传感器网络的随机压缩数据聚合(S-CDA)算法。泊松点过程(PPP)对随机部署建模,同时允许有效地实现适当的稀疏化矩阵,即随机离散傅里叶变换(RDFT)。信号恢复基于RDFT,它揭示了光滑信号的频率含量,如温度或湿度图,由很少的频率分量组成。恢复方法基于加速迭代硬阈值(AIHT),该方法将除最大(幅度)频率分量外的所有频率分量设置为零。PPP的采用允许分别使用随机几何和压缩感知的先前结果来分析S-CDA的通信和压缩方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressive Data Aggregation from Poisson point process observations
This paper introduces Stochastic Compressive Data Aggregation (S-CDA) for wireless sensor networks (WSN) under random deployments. The Poisson point process (PPP) models the random deployment, and at the same time, allows the efficient implementation of an adequate sparsifying matrix, the random discrete Fourier transform (RDFT). The signal recovery is based on the RDFT which reveals the frequency content of smooth signals, such as temperature or humidity maps, which consist of few frequency components. The recovery methods are based on the accelerated iterative hard thresholding (AIHT) which sets all but the largest (in magnitude) frequency components to zero. The adoption of the PPP allows to analyze the communication and compression aspects of S-CDA using previous results from stochastic geometry and compressed sensing, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Receiver and resource allocation optimization for uplink NOMA in 5G wireless networks Radio resource allocation for full-duplex multicarrier wireless systems Optimum user selection for hybrid-duplex device-to-device in cellular networks Iterative widely linear equalization for MIMO SC-FDMA systems Performance analysis of K-best detection with adaptive modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1