包含线性不等式约束的医学成像问题的快速并行方法

Thomas D. Capricelli
{"title":"包含线性不等式约束的医学成像问题的快速并行方法","authors":"Thomas D. Capricelli","doi":"10.1109/ISBI.2008.4541074","DOIUrl":null,"url":null,"abstract":"When studying problems such as tomography with bounded noise or IMRT, we need to solve systems with many linear inequality constraints. Projection-based algorithms are often used to solve this kind of problem. We see how previous work for accelerating the convergence of linear algorithms can be recast within the most recent generic framework, and show that it gives better results in specific cases. The proposed algorithm allows general convex constraints as well and the conditions for convergence are less restrictive than tradition- nal algorithms. We provide numerical results carried out in the context of tomography and IMRT.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast parallel method for medical imaging problems including linear inequality constraints\",\"authors\":\"Thomas D. Capricelli\",\"doi\":\"10.1109/ISBI.2008.4541074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When studying problems such as tomography with bounded noise or IMRT, we need to solve systems with many linear inequality constraints. Projection-based algorithms are often used to solve this kind of problem. We see how previous work for accelerating the convergence of linear algorithms can be recast within the most recent generic framework, and show that it gives better results in specific cases. The proposed algorithm allows general convex constraints as well and the conditions for convergence are less restrictive than tradition- nal algorithms. We provide numerical results carried out in the context of tomography and IMRT.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在研究有界噪声层析成像或IMRT等问题时,我们需要求解具有许多线性不等式约束的系统。基于投影的算法通常用于解决这类问题。我们看到以前的工作是如何加速线性算法的收敛,可以在最新的通用框架中重塑,并表明它在特定情况下给出了更好的结果。该算法允许一般的凸约束,收敛条件比传统算法约束少。我们提供了在断层扫描和IMRT的背景下进行的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast parallel method for medical imaging problems including linear inequality constraints
When studying problems such as tomography with bounded noise or IMRT, we need to solve systems with many linear inequality constraints. Projection-based algorithms are often used to solve this kind of problem. We see how previous work for accelerating the convergence of linear algorithms can be recast within the most recent generic framework, and show that it gives better results in specific cases. The proposed algorithm allows general convex constraints as well and the conditions for convergence are less restrictive than tradition- nal algorithms. We provide numerical results carried out in the context of tomography and IMRT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1