非支配解决策空间多样性的交叉比较研究

Motoki Sato, A. Oyama
{"title":"非支配解决策空间多样性的交叉比较研究","authors":"Motoki Sato, A. Oyama","doi":"10.1109/SSCI50451.2021.9660042","DOIUrl":null,"url":null,"abstract":"Capturing diversity of non-dominated and dominated solutions in decision space is important for realworld multiobjective optimization to provide a decision maker many options. This paper studies how different crossover operators affect diversity of non-dominated and dominated solutions in decision space obtained by multiobjective evolutionary algorithms (MOEA). We compare the solutions obtained by NSGA-II with simulated binary crossover (SBX), unimodal normally distributed crossover (UNDX), reproduction process of differential evolution (DE), or blend crossover (BLX-α) for speed reducer design (SRD) problem and Mazda problem. The result shows that selection of crossover operator significantly affects diversity of non-dominated and dominated solutions in the decision space obtained by MOEA.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Crossovers for Decision Space Diversity of Non-Dominated Solutions\",\"authors\":\"Motoki Sato, A. Oyama\",\"doi\":\"10.1109/SSCI50451.2021.9660042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing diversity of non-dominated and dominated solutions in decision space is important for realworld multiobjective optimization to provide a decision maker many options. This paper studies how different crossover operators affect diversity of non-dominated and dominated solutions in decision space obtained by multiobjective evolutionary algorithms (MOEA). We compare the solutions obtained by NSGA-II with simulated binary crossover (SBX), unimodal normally distributed crossover (UNDX), reproduction process of differential evolution (DE), or blend crossover (BLX-α) for speed reducer design (SRD) problem and Mazda problem. The result shows that selection of crossover operator significantly affects diversity of non-dominated and dominated solutions in the decision space obtained by MOEA.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

获取决策空间中非支配解和支配解的多样性对于现实世界的多目标优化具有重要意义,可以为决策者提供多种选择。研究了多目标进化算法(MOEA)决策空间中不同的交叉算子对非支配解和支配解多样性的影响。针对减速器设计(SRD)问题和马自达问题,将NSGA-II与模拟二元交叉(SBX)、单峰正态分布交叉(UNDX)、差分进化再现过程(DE)或混合交叉(BLX-α)求解结果进行了比较。结果表明,交叉算子的选择对MOEA得到的决策空间中非支配解和支配解的多样性有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of Crossovers for Decision Space Diversity of Non-Dominated Solutions
Capturing diversity of non-dominated and dominated solutions in decision space is important for realworld multiobjective optimization to provide a decision maker many options. This paper studies how different crossover operators affect diversity of non-dominated and dominated solutions in decision space obtained by multiobjective evolutionary algorithms (MOEA). We compare the solutions obtained by NSGA-II with simulated binary crossover (SBX), unimodal normally distributed crossover (UNDX), reproduction process of differential evolution (DE), or blend crossover (BLX-α) for speed reducer design (SRD) problem and Mazda problem. The result shows that selection of crossover operator significantly affects diversity of non-dominated and dominated solutions in the decision space obtained by MOEA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1