使用性能监控单元事件预测Intel XScale/spl reg/处理器的功耗

Gilberto Contreras, M. Martonosi
{"title":"使用性能监控单元事件预测Intel XScale/spl reg/处理器的功耗","authors":"Gilberto Contreras, M. Martonosi","doi":"10.1145/1077603.1077657","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a first-order, linear power estimation model that uses performance counters to estimate run-time CPU and memory power consumption of the Intel PXA255 processor. Our model uses a set of power weights that map hardware performance counter values to processor and memory power consumption. Power weights are derived offline once per processor voltage and frequency configuration using parameter estimation techniques. They can be applied in a dynamic voltage/frequency scaling environment by setting six descriptive parameters. We have tested our model using a wide selection of benchmarks including SPEC2000, Java CDC and Java CLDC programming environments. The accuracy is quite good; average estimated power consumption is within 4% of the measured average CPU power consumption. We believe such power estimation schemes can serve as a foundation for intelligent, power-aware embedded systems that dynamically adapt to the device's power consumption.","PeriodicalId":256018,"journal":{"name":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"279","resultStr":"{\"title\":\"Power prediction for Intel XScale/spl reg/ processors using performance monitoring unit events\",\"authors\":\"Gilberto Contreras, M. Martonosi\",\"doi\":\"10.1145/1077603.1077657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a first-order, linear power estimation model that uses performance counters to estimate run-time CPU and memory power consumption of the Intel PXA255 processor. Our model uses a set of power weights that map hardware performance counter values to processor and memory power consumption. Power weights are derived offline once per processor voltage and frequency configuration using parameter estimation techniques. They can be applied in a dynamic voltage/frequency scaling environment by setting six descriptive parameters. We have tested our model using a wide selection of benchmarks including SPEC2000, Java CDC and Java CLDC programming environments. The accuracy is quite good; average estimated power consumption is within 4% of the measured average CPU power consumption. We believe such power estimation schemes can serve as a foundation for intelligent, power-aware embedded systems that dynamically adapt to the device's power consumption.\",\"PeriodicalId\":256018,\"journal\":{\"name\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"279\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1077603.1077657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077603.1077657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 279

摘要

本文演示了一个一阶线性功率估计模型,该模型使用性能计数器来估计Intel PXA255处理器的运行时CPU和内存功耗。我们的模型使用一组功率权重,将硬件性能计数器值映射到处理器和内存功耗。使用参数估计技术对每个处理器电压和频率配置脱机一次导出功率权重。通过设置六个描述性参数,它们可以应用于动态电压/频率缩放环境。我们使用广泛的基准测试了我们的模型,包括SPEC2000、Java CDC和Java CLDC编程环境。精度相当好;平均估计功耗在实测平均CPU功耗的4%以内。我们相信这样的功耗估计方案可以作为智能、功耗感知嵌入式系统的基础,该系统可以动态地适应设备的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power prediction for Intel XScale/spl reg/ processors using performance monitoring unit events
This paper demonstrates a first-order, linear power estimation model that uses performance counters to estimate run-time CPU and memory power consumption of the Intel PXA255 processor. Our model uses a set of power weights that map hardware performance counter values to processor and memory power consumption. Power weights are derived offline once per processor voltage and frequency configuration using parameter estimation techniques. They can be applied in a dynamic voltage/frequency scaling environment by setting six descriptive parameters. We have tested our model using a wide selection of benchmarks including SPEC2000, Java CDC and Java CLDC programming environments. The accuracy is quite good; average estimated power consumption is within 4% of the measured average CPU power consumption. We believe such power estimation schemes can serve as a foundation for intelligent, power-aware embedded systems that dynamically adapt to the device's power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing sensor movement planning for energy efficiency Power-optimal repeater insertion considering V/sub dd/ and V/sub th/ as design freedoms An efficient (SPST) and its applications on MPEG-4 AVC/H.264 transform coding design A 9.5mW 4GHz WCDMA frequency synthesizer in 0.13/spl mu/m CMOS Linear programming for sizing, V/sub th/ and V/sub dd/ assignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1