无线传感器网络中支持向量机运行复杂度控制的改进约简集方法

Mingqing Hu, A. Boni
{"title":"无线传感器网络中支持向量机运行复杂度控制的改进约简集方法","authors":"Mingqing Hu, A. Boni","doi":"10.1109/ETFA.2006.355379","DOIUrl":null,"url":null,"abstract":"One prominent disadvantage of SVM when implemented in wireless sensor networks (WSNs) is the run-time complexity of classifier, which linearly increases with the number of support vectors (SVs). This disadvantage prevents applying SVM in some applications. In this paper, we propose an improved reduced set method to find solutions characterized by few number of vectors and having good generalization properties. The idea behind our improved method is to combine finding patterns with maximum absolute margin and performing gradient-descent to find new patterns in new decision function. Our method can partially overcome the non-convexity difficulty. The application context is that of WSNs, where a general sensor node is equipped with fixed point CPU. The performance of fixed point implementation of our algorithm is also provided.","PeriodicalId":431393,"journal":{"name":"2006 IEEE Conference on Emerging Technologies and Factory Automation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Reduced Set Method to Control the Run-time Complexity of SVM in Wireless Sensor Networks\",\"authors\":\"Mingqing Hu, A. Boni\",\"doi\":\"10.1109/ETFA.2006.355379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One prominent disadvantage of SVM when implemented in wireless sensor networks (WSNs) is the run-time complexity of classifier, which linearly increases with the number of support vectors (SVs). This disadvantage prevents applying SVM in some applications. In this paper, we propose an improved reduced set method to find solutions characterized by few number of vectors and having good generalization properties. The idea behind our improved method is to combine finding patterns with maximum absolute margin and performing gradient-descent to find new patterns in new decision function. Our method can partially overcome the non-convexity difficulty. The application context is that of WSNs, where a general sensor node is equipped with fixed point CPU. The performance of fixed point implementation of our algorithm is also provided.\",\"PeriodicalId\":431393,\"journal\":{\"name\":\"2006 IEEE Conference on Emerging Technologies and Factory Automation\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Emerging Technologies and Factory Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2006.355379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies and Factory Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2006.355379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

支持向量机在无线传感器网络中的一个突出缺点是分类器的运行时复杂度随着支持向量(SVs)的数量线性增加。这个缺点阻碍了SVM在某些应用中的应用。本文提出了一种改进的约简集方法,用于寻找具有少量向量和良好泛化性质的解。我们改进的方法背后的思想是将寻找模式与最大绝对裕度相结合,并使用梯度下降法在新的决策函数中寻找新的模式。我们的方法可以部分克服非凸性的困难。应用环境是无线传感器网络,其中一般传感器节点配备定点CPU。给出了算法定点实现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Reduced Set Method to Control the Run-time Complexity of SVM in Wireless Sensor Networks
One prominent disadvantage of SVM when implemented in wireless sensor networks (WSNs) is the run-time complexity of classifier, which linearly increases with the number of support vectors (SVs). This disadvantage prevents applying SVM in some applications. In this paper, we propose an improved reduced set method to find solutions characterized by few number of vectors and having good generalization properties. The idea behind our improved method is to combine finding patterns with maximum absolute margin and performing gradient-descent to find new patterns in new decision function. Our method can partially overcome the non-convexity difficulty. The application context is that of WSNs, where a general sensor node is equipped with fixed point CPU. The performance of fixed point implementation of our algorithm is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Response Time in Ethernet-based Automation Systems Repeater vs. Bridge-Based Hybrid Wired/Wireless PROFIBUS Networks: a Comparative Performance Analysis Control Architecture for Reconfigurable Manufacturing Systems: the PABADIS'PROMISE approach Memory-Aware Feedback Scheduling of Control Tasks Reconfigurable Logic Control Using IEC 61499 Function Blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1