大规模MIMO接收机的无源随机访问:利用角域稀疏性

Xinyu Xie, Yongpeng Wu
{"title":"大规模MIMO接收机的无源随机访问:利用角域稀疏性","authors":"Xinyu Xie, Yongpeng Wu","doi":"10.1109/iccc52777.2021.9580441","DOIUrl":null,"url":null,"abstract":"This paper investigates the unsourced random access (URA) scheme to accommodate a large amount of machine-type users communicating to a massive MIMO base station. Existing works adopt a slotted transmission strategy to reduce system complexity and operate under the framework of coupled compressed sensing (CCS), concatenating an outer tree code to an inner compressed sensing code for message stitching. We observe that the sparse angular domain MIMO channel can help decouple the CCS scheme and introduce an uncoupled slotted transmission scheme without the tree encoder/decoder. We propose a novel MRF-GAMP method capturing the structured sparsity of the angular domain channel for activity detection and channel estimation. Then, message reconstruction is based on rearranging strongly correlated slot-wise channels into groups by a clustering algorithm. Extensive simulation shows that our approach achieves a better error performance and a higher spectral efficiency compared to the CCS scheme.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsourced Random Access with a Massive MIMO Receiver: Exploiting Angular Domain Sparsity\",\"authors\":\"Xinyu Xie, Yongpeng Wu\",\"doi\":\"10.1109/iccc52777.2021.9580441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the unsourced random access (URA) scheme to accommodate a large amount of machine-type users communicating to a massive MIMO base station. Existing works adopt a slotted transmission strategy to reduce system complexity and operate under the framework of coupled compressed sensing (CCS), concatenating an outer tree code to an inner compressed sensing code for message stitching. We observe that the sparse angular domain MIMO channel can help decouple the CCS scheme and introduce an uncoupled slotted transmission scheme without the tree encoder/decoder. We propose a novel MRF-GAMP method capturing the structured sparsity of the angular domain channel for activity detection and channel estimation. Then, message reconstruction is based on rearranging strongly correlated slot-wise channels into groups by a clustering algorithm. Extensive simulation shows that our approach achieves a better error performance and a higher spectral efficiency compared to the CCS scheme.\",\"PeriodicalId\":425118,\"journal\":{\"name\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccc52777.2021.9580441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了无源随机接入(URA)方案,以适应大量机器型用户与大规模MIMO基站的通信。现有工作采用开槽传输策略来降低系统复杂性,并在耦合压缩感知(CCS)框架下运行,将外部树码与内部压缩感知码串联起来进行消息拼接。我们观察到稀疏角域MIMO信道可以帮助解耦CCS方案,并引入不需要树编码器/解码器的解耦槽传输方案。我们提出了一种新的MRF-GAMP方法,用于捕获角域信道的结构化稀疏性,用于活动检测和信道估计。然后,通过聚类算法将强相关的时隙通道重新排列成组,从而实现消息重构。大量的仿真表明,与CCS方案相比,我们的方法具有更好的误差性能和更高的频谱效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsourced Random Access with a Massive MIMO Receiver: Exploiting Angular Domain Sparsity
This paper investigates the unsourced random access (URA) scheme to accommodate a large amount of machine-type users communicating to a massive MIMO base station. Existing works adopt a slotted transmission strategy to reduce system complexity and operate under the framework of coupled compressed sensing (CCS), concatenating an outer tree code to an inner compressed sensing code for message stitching. We observe that the sparse angular domain MIMO channel can help decouple the CCS scheme and introduce an uncoupled slotted transmission scheme without the tree encoder/decoder. We propose a novel MRF-GAMP method capturing the structured sparsity of the angular domain channel for activity detection and channel estimation. Then, message reconstruction is based on rearranging strongly correlated slot-wise channels into groups by a clustering algorithm. Extensive simulation shows that our approach achieves a better error performance and a higher spectral efficiency compared to the CCS scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1