基于深度神经网络的社交媒体文本句子边界检测及结束标记建议

J. Kaur, J. Singh
{"title":"基于深度神经网络的社交媒体文本句子边界检测及结束标记建议","authors":"J. Kaur, J. Singh","doi":"10.1109/ICCCIS48478.2019.8974495","DOIUrl":null,"url":null,"abstract":"For processing any natural language processing application, the knowledge of structure of sentence including its boundaries plays a vital role. Incorrect sentence boundary may lead to wrong outputs and hence decreasing the performance of NLP systems. Detecting sentence boundaries in code mixed social media text is not an easy task. People generally omits the boundary markers and use punctuation for other stylistic tasks. We propose a deep neural network approach for sentence boundary marking as well as suggesting appropriate punctuation mark in code mixed social media text. We experimented with single layer bidirectional and two layer bidirectional models. Both word sequence and character sequence are experimented. Bidirectional model using character sequence out performs all other models for sentence boundary detection as well as end marker suggestion.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Neural Network Based Sentence Boundary Detection and End Marker Suggestion for Social Media Text\",\"authors\":\"J. Kaur, J. Singh\",\"doi\":\"10.1109/ICCCIS48478.2019.8974495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For processing any natural language processing application, the knowledge of structure of sentence including its boundaries plays a vital role. Incorrect sentence boundary may lead to wrong outputs and hence decreasing the performance of NLP systems. Detecting sentence boundaries in code mixed social media text is not an easy task. People generally omits the boundary markers and use punctuation for other stylistic tasks. We propose a deep neural network approach for sentence boundary marking as well as suggesting appropriate punctuation mark in code mixed social media text. We experimented with single layer bidirectional and two layer bidirectional models. Both word sequence and character sequence are experimented. Bidirectional model using character sequence out performs all other models for sentence boundary detection as well as end marker suggestion.\",\"PeriodicalId\":436154,\"journal\":{\"name\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS48478.2019.8974495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于任何自然语言处理应用,包括句子边界在内的句子结构知识都起着至关重要的作用。不正确的句子边界可能导致错误的输出,从而降低NLP系统的性能。在代码混合的社交媒体文本中检测句子边界不是一件容易的事。人们通常省略边界标记,使用标点符号完成其他文体任务。我们提出了一种深度神经网络方法来标记混合社交媒体文本的句子边界,并建议适当的标点符号。我们尝试了单层双向和双层双向模型。单词序列和字符序列都进行了实验。使用字符序列out的双向模型代替了所有其他模型进行句子边界检测和结束标记提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Network Based Sentence Boundary Detection and End Marker Suggestion for Social Media Text
For processing any natural language processing application, the knowledge of structure of sentence including its boundaries plays a vital role. Incorrect sentence boundary may lead to wrong outputs and hence decreasing the performance of NLP systems. Detecting sentence boundaries in code mixed social media text is not an easy task. People generally omits the boundary markers and use punctuation for other stylistic tasks. We propose a deep neural network approach for sentence boundary marking as well as suggesting appropriate punctuation mark in code mixed social media text. We experimented with single layer bidirectional and two layer bidirectional models. Both word sequence and character sequence are experimented. Bidirectional model using character sequence out performs all other models for sentence boundary detection as well as end marker suggestion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Survey on Stress Emotion Recognition in Speech Weak Form Efficiency Of Currency Futures: Evidence From India YouTube Video Classification based on Title and Description Text SegNet-based Corpus Callosum segmentation for brain Magnetic Resonance Images (MRI) A synchronizer-mediator for lazy replicated databases over a decentralized P2P architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1