用于监控视频摘要应用的合成视频数据集生成工具箱

K. Namitha, A. Narayanan, M. Geetha
{"title":"用于监控视频摘要应用的合成视频数据集生成工具箱","authors":"K. Namitha, A. Narayanan, M. Geetha","doi":"10.1109/ICCSP48568.2020.9182084","DOIUrl":null,"url":null,"abstract":"Video synopsis technique aims to condense long duration videos into its compact representation for efficient browsing and retrieval of surveillance videos. The synopsis videos depend on the results of object detection and tracking in input video. However, there is a lack of publicly available commonly used datasets that are properly annotated for training trackers and analyzing the performance of various approaches in video synopsis. This paper introduces an interactive toolbox that allows users to generate synthetic videos with user-defined parameters and related tube information, eliminating the steps of detection and tracking. The proposed toolbox enables users to simulate general and specific scenarios of interest, which are expected to be observed in surveillance videos. We present experiments that show the usability and effectiveness of using this toolbox in evaluating different video synopsis methods.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Synthetic Video Dataset Generation Toolbox for Surveillance Video Synopsis Applications\",\"authors\":\"K. Namitha, A. Narayanan, M. Geetha\",\"doi\":\"10.1109/ICCSP48568.2020.9182084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video synopsis technique aims to condense long duration videos into its compact representation for efficient browsing and retrieval of surveillance videos. The synopsis videos depend on the results of object detection and tracking in input video. However, there is a lack of publicly available commonly used datasets that are properly annotated for training trackers and analyzing the performance of various approaches in video synopsis. This paper introduces an interactive toolbox that allows users to generate synthetic videos with user-defined parameters and related tube information, eliminating the steps of detection and tracking. The proposed toolbox enables users to simulate general and specific scenarios of interest, which are expected to be observed in surveillance videos. We present experiments that show the usability and effectiveness of using this toolbox in evaluating different video synopsis methods.\",\"PeriodicalId\":321133,\"journal\":{\"name\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP48568.2020.9182084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频摘要技术的目的是将长时间的视频压缩成紧凑的表示形式,以实现监控视频的高效浏览和检索。摘要视频依赖于输入视频中目标检测和跟踪的结果。然而,缺乏公开可用的常用数据集,这些数据集被适当地注释用于训练跟踪器和分析视频摘要中各种方法的性能。本文介绍了一个交互式工具箱,允许用户生成具有用户自定义参数和相关管信息的合成视频,消除了检测和跟踪的步骤。提出的工具箱使用户能够模拟一般和特定的感兴趣的场景,这些场景预计将在监控视频中观察到。我们提出的实验表明,使用该工具箱在评估不同的视频摘要方法的可用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Synthetic Video Dataset Generation Toolbox for Surveillance Video Synopsis Applications
Video synopsis technique aims to condense long duration videos into its compact representation for efficient browsing and retrieval of surveillance videos. The synopsis videos depend on the results of object detection and tracking in input video. However, there is a lack of publicly available commonly used datasets that are properly annotated for training trackers and analyzing the performance of various approaches in video synopsis. This paper introduces an interactive toolbox that allows users to generate synthetic videos with user-defined parameters and related tube information, eliminating the steps of detection and tracking. The proposed toolbox enables users to simulate general and specific scenarios of interest, which are expected to be observed in surveillance videos. We present experiments that show the usability and effectiveness of using this toolbox in evaluating different video synopsis methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1