基于EMD分解的航空发动机轴承故障诊断新方法

Xiaopu Zhang, Zhenbang Lv, Qian Sun
{"title":"基于EMD分解的航空发动机轴承故障诊断新方法","authors":"Xiaopu Zhang, Zhenbang Lv, Qian Sun","doi":"10.1109/PHM2022-London52454.2022.00010","DOIUrl":null,"url":null,"abstract":"Traditional vibration fault diagnosis methods include wavelet transform, modal analysis and so on. It is found that the instantaneous impact components associated with the fault in the engine bearing vibration signals are sparse in the time-frequency transform domain. For this property, a sparse signal representation using dictionary learning based on EMD decomposition and a sparse signal reconstruction method based on orthogonal matching pursuit (OMP) algorithm are proposed in this paper. Firstly, empirical mode decomposition (EMD) and wavelet denoising methods are used to pre-process the vibration signal to eliminate the harmonic and noise interference; Secondly, a super complete dictionary is constructed by using singular value decomposition algorithm to achieve the sparse representation of the signal; Finally, the sparse reconstruction of fault features is realized by using orthogonal matching pursuit algorithm. Simulation and experimental results show that the proposed method can reduce the interference of background noise and impurity frequency more effectively, and verify the effectiveness and applicability of the proposed method for aero-engine bearing fault feature extraction.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method of Aero-engine Bearing Fault Diagnosis Based on EMD Decomposition\",\"authors\":\"Xiaopu Zhang, Zhenbang Lv, Qian Sun\",\"doi\":\"10.1109/PHM2022-London52454.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional vibration fault diagnosis methods include wavelet transform, modal analysis and so on. It is found that the instantaneous impact components associated with the fault in the engine bearing vibration signals are sparse in the time-frequency transform domain. For this property, a sparse signal representation using dictionary learning based on EMD decomposition and a sparse signal reconstruction method based on orthogonal matching pursuit (OMP) algorithm are proposed in this paper. Firstly, empirical mode decomposition (EMD) and wavelet denoising methods are used to pre-process the vibration signal to eliminate the harmonic and noise interference; Secondly, a super complete dictionary is constructed by using singular value decomposition algorithm to achieve the sparse representation of the signal; Finally, the sparse reconstruction of fault features is realized by using orthogonal matching pursuit algorithm. Simulation and experimental results show that the proposed method can reduce the interference of background noise and impurity frequency more effectively, and verify the effectiveness and applicability of the proposed method for aero-engine bearing fault feature extraction.\",\"PeriodicalId\":269605,\"journal\":{\"name\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM2022-London52454.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的振动故障诊断方法包括小波变换、模态分析等。研究发现,发动机轴承振动信号中与故障相关的瞬时冲击分量在时频域中是稀疏的。针对这一特性,本文提出了基于EMD分解的字典学习稀疏信号表示方法和基于正交匹配追踪(OMP)算法的稀疏信号重构方法。首先,采用经验模态分解(EMD)和小波去噪方法对振动信号进行预处理,消除谐波和噪声干扰;其次,利用奇异值分解算法构造一个超完备字典,实现信号的稀疏表示;最后,利用正交匹配追踪算法实现故障特征的稀疏重建。仿真和实验结果表明,该方法能更有效地降低背景噪声和杂质频率的干扰,验证了该方法在航空发动机轴承故障特征提取中的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method of Aero-engine Bearing Fault Diagnosis Based on EMD Decomposition
Traditional vibration fault diagnosis methods include wavelet transform, modal analysis and so on. It is found that the instantaneous impact components associated with the fault in the engine bearing vibration signals are sparse in the time-frequency transform domain. For this property, a sparse signal representation using dictionary learning based on EMD decomposition and a sparse signal reconstruction method based on orthogonal matching pursuit (OMP) algorithm are proposed in this paper. Firstly, empirical mode decomposition (EMD) and wavelet denoising methods are used to pre-process the vibration signal to eliminate the harmonic and noise interference; Secondly, a super complete dictionary is constructed by using singular value decomposition algorithm to achieve the sparse representation of the signal; Finally, the sparse reconstruction of fault features is realized by using orthogonal matching pursuit algorithm. Simulation and experimental results show that the proposed method can reduce the interference of background noise and impurity frequency more effectively, and verify the effectiveness and applicability of the proposed method for aero-engine bearing fault feature extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defending Against Adversarial Attacks on Time- series with Selective Classification Fault diagnosis of fire control system based on genetic algorithm optimized BP neural network Monitoring and Mitigating Ionosphere threats in GNSS Space Environment Science A Relation Prediction Method for Industrial Knowledge Graph with Complex Relations Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and Informed by the Principle of Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1