支持向量机随机抽样在大数据中的应用

Erik M. Ferragut, J. Laska
{"title":"支持向量机随机抽样在大数据中的应用","authors":"Erik M. Ferragut, J. Laska","doi":"10.1109/ICMLA.2012.65","DOIUrl":null,"url":null,"abstract":"A trend in machine learning is the application of existing algorithms to ever-larger datasets. Support Vector Machines (SVM) have been shown to be very effective, but have been difficult to scale to large-data problems. Some approaches have sought to scale SVM training by approximating and parallelizing the underlying quadratic optimization problem. This paper pursues a different approach. Our algorithm, which we call Sampled SVM, uses an existing SVM training algorithm to create a new SVM training algorithm. It uses randomized data sampling to better extend SVMs to large data applications. Experiments on several datasets show that our method is faster than and comparably accurate to both the original SVM algorithm it is based on and the Cascade SVM, the leading data organization approach for SVMs in the literature. Further, we show that our approach is more amenable to parallelization than Cascade SVM.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Randomized Sampling for Large Data Applications of SVM\",\"authors\":\"Erik M. Ferragut, J. Laska\",\"doi\":\"10.1109/ICMLA.2012.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A trend in machine learning is the application of existing algorithms to ever-larger datasets. Support Vector Machines (SVM) have been shown to be very effective, but have been difficult to scale to large-data problems. Some approaches have sought to scale SVM training by approximating and parallelizing the underlying quadratic optimization problem. This paper pursues a different approach. Our algorithm, which we call Sampled SVM, uses an existing SVM training algorithm to create a new SVM training algorithm. It uses randomized data sampling to better extend SVMs to large data applications. Experiments on several datasets show that our method is faster than and comparably accurate to both the original SVM algorithm it is based on and the Cascade SVM, the leading data organization approach for SVMs in the literature. Further, we show that our approach is more amenable to parallelization than Cascade SVM.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

机器学习的一个趋势是将现有算法应用于越来越大的数据集。支持向量机(SVM)已被证明是非常有效的,但很难扩展到大数据问题。一些方法试图通过逼近和并行化潜在的二次优化问题来扩展支持向量机的训练。本文采用了一种不同的方法。我们的算法,我们称之为采样支持向量机,使用现有的支持向量机训练算法来创建一个新的支持向量机训练算法。它使用随机数据采样来更好地将svm扩展到大型数据应用程序。在多个数据集上的实验表明,我们的方法比它所基于的原始支持向量机算法和文献中领先的支持向量机数据组织方法级联支持向量机(Cascade SVM)都要快,而且相当准确。此外,我们表明我们的方法比级联支持向量机更适合并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Randomized Sampling for Large Data Applications of SVM
A trend in machine learning is the application of existing algorithms to ever-larger datasets. Support Vector Machines (SVM) have been shown to be very effective, but have been difficult to scale to large-data problems. Some approaches have sought to scale SVM training by approximating and parallelizing the underlying quadratic optimization problem. This paper pursues a different approach. Our algorithm, which we call Sampled SVM, uses an existing SVM training algorithm to create a new SVM training algorithm. It uses randomized data sampling to better extend SVMs to large data applications. Experiments on several datasets show that our method is faster than and comparably accurate to both the original SVM algorithm it is based on and the Cascade SVM, the leading data organization approach for SVMs in the literature. Further, we show that our approach is more amenable to parallelization than Cascade SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1