{"title":"基于LQR和Lyapunov控制器的运动学自行车模型轨迹跟踪性能比较","authors":"Halit Ege Ceyhun, A. Goren","doi":"10.55974/utbd.1130198","DOIUrl":null,"url":null,"abstract":"This paper focuses on comparative results of two different controllers applied to kinematic bicycle model with rear wheel contact point to the ground as the reference point. The wide range of representation of different types of robots and vehicles of kinematic bicycle model is the main reason for this model selection. This paper has three main sections. The first section of the paper is mathematical modeling of the model. The second section is describing the utilized control techniques. The last section shares results of the simulations. The simulations have been carried out with pure feedback signals in absence of noise. The compared two controllers are an (Linear Quadratic Regulator)LQR controller and a Lyapunov based controller. The objective in the simulations is to track and complete a given constant radius trajectory. Last section includes comparison of results by analyzing statistical values of a defined error signal.","PeriodicalId":106148,"journal":{"name":"Uluslararası Teknolojik Bilimler Dergisi","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory tracking performance comparison of kinematic bicycle model with LQR and Lyapunov based controllers\",\"authors\":\"Halit Ege Ceyhun, A. Goren\",\"doi\":\"10.55974/utbd.1130198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on comparative results of two different controllers applied to kinematic bicycle model with rear wheel contact point to the ground as the reference point. The wide range of representation of different types of robots and vehicles of kinematic bicycle model is the main reason for this model selection. This paper has three main sections. The first section of the paper is mathematical modeling of the model. The second section is describing the utilized control techniques. The last section shares results of the simulations. The simulations have been carried out with pure feedback signals in absence of noise. The compared two controllers are an (Linear Quadratic Regulator)LQR controller and a Lyapunov based controller. The objective in the simulations is to track and complete a given constant radius trajectory. Last section includes comparison of results by analyzing statistical values of a defined error signal.\",\"PeriodicalId\":106148,\"journal\":{\"name\":\"Uluslararası Teknolojik Bilimler Dergisi\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uluslararası Teknolojik Bilimler Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55974/utbd.1130198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Teknolojik Bilimler Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55974/utbd.1130198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trajectory tracking performance comparison of kinematic bicycle model with LQR and Lyapunov based controllers
This paper focuses on comparative results of two different controllers applied to kinematic bicycle model with rear wheel contact point to the ground as the reference point. The wide range of representation of different types of robots and vehicles of kinematic bicycle model is the main reason for this model selection. This paper has three main sections. The first section of the paper is mathematical modeling of the model. The second section is describing the utilized control techniques. The last section shares results of the simulations. The simulations have been carried out with pure feedback signals in absence of noise. The compared two controllers are an (Linear Quadratic Regulator)LQR controller and a Lyapunov based controller. The objective in the simulations is to track and complete a given constant radius trajectory. Last section includes comparison of results by analyzing statistical values of a defined error signal.