使用认知建模的三维性别识别

Jens Fagertun, Tobias Andersen, Thomas F. Hansen, R. Paulsen
{"title":"使用认知建模的三维性别识别","authors":"Jens Fagertun, Tobias Andersen, Thomas F. Hansen, R. Paulsen","doi":"10.1109/IWBF.2013.6547324","DOIUrl":null,"url":null,"abstract":"We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, we use linear regression. In addition, we use the gender strength to construct a smaller but refined training set, by identifying and removing ill-defined training examples. We use this refined training set to improve the performance of known classification algorithms. Results are presented using a 5-fold cross-validation scheme and also reproduced using an unseen data set.","PeriodicalId":412596,"journal":{"name":"2013 International Workshop on Biometrics and Forensics (IWBF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D gender recognition using cognitive modeling\",\"authors\":\"Jens Fagertun, Tobias Andersen, Thomas F. Hansen, R. Paulsen\",\"doi\":\"10.1109/IWBF.2013.6547324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, we use linear regression. In addition, we use the gender strength to construct a smaller but refined training set, by identifying and removing ill-defined training examples. We use this refined training set to improve the performance of known classification algorithms. Results are presented using a 5-fold cross-validation scheme and also reproduced using an unseen data set.\",\"PeriodicalId\":412596,\"journal\":{\"name\":\"2013 International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF.2013.6547324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2013.6547324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用人脸的3D扫描和认知模型来估计“性别优势”。“性别力量”是一个连续的性别阶级变量,取代了传统的二元阶级标签。为了可视化人类在进行性别分类时使用的一些视觉趋势,我们使用线性回归。此外,我们使用性别强度来构建一个更小但更精细的训练集,通过识别和删除不明确的训练样本。我们使用这个改进的训练集来提高已知分类算法的性能。结果采用5倍交叉验证方案,并使用未见过的数据集进行再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D gender recognition using cognitive modeling
We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, we use linear regression. In addition, we use the gender strength to construct a smaller but refined training set, by identifying and removing ill-defined training examples. We use this refined training set to improve the performance of known classification algorithms. Results are presented using a 5-fold cross-validation scheme and also reproduced using an unseen data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved rotation-invariant degraded partial palmprint recognition technique Telephone handset identification using sparse representations of spectral feature sketches High quality training materials to detect printed fingerprints: Benchmarking three different aquisition sensors producing printing templates Understanding the discrimination power of facial regions in forensic casework Semantic description in stereo video content for surveillance applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1