非对称加热微尺度装置的沸腾灵敏度分析

Fanghao Yang, M. Schultz, P. Parida, E. Colgan, B. Dang, Gerard McVicker, T. Chainer
{"title":"非对称加热微尺度装置的沸腾灵敏度分析","authors":"Fanghao Yang, M. Schultz, P. Parida, E. Colgan, B. Dang, Gerard McVicker, T. Chainer","doi":"10.1109/ITHERM.2016.7517714","DOIUrl":null,"url":null,"abstract":"Thermal challenges in 3D ICs have driven the need for embedded chip cooling. In this paper, we measured the thermal performance of a two-phase system employing flow boiling in chip-embedded micro-channels utilizing the latent heat of vaporization of dielectric refrigerants (such as R-1234ze) In the present study, an investigation was performed on a 20 mm × 20 mm thermal test vehicle having a heater layer to simulate the heat generation from a state-of-the-art 8-core microprocessor chip and a sensor layer to measure temperature at key locations within the test vehicle. Fluidic channels in the form of radial expanding micro-scale cavities with micro-pin fields were etched into the test vehicle. The micro-pin fields represent the through-silicon-via (TSV) interconnects present in multi-die stacks. The heaters are used to simulate a background heat flux of 20 W/cm2 and individual core heat fluxes of up to 210 W/cm2. This heat generation capability corresponds anywhere from a processor low-power idle mode to a high-power super-turbo mode and beyond. Since the flow resistance in a microchannel for two-phase cooling depends on in-situ heat generation, asymmetric power dissipation due to different power levels in various cores and non-core areas may unbalance the overall flow distribution. Furthermore, it may reduce the local heat transfer rate and even lead to premature failure of working cores. This study aims at understanding the effects of asymmetric heat flux profiles on flow resistance and boiling heat transfer.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boiling sensitivity analysis of asymmetrically heated micro-scale devices\",\"authors\":\"Fanghao Yang, M. Schultz, P. Parida, E. Colgan, B. Dang, Gerard McVicker, T. Chainer\",\"doi\":\"10.1109/ITHERM.2016.7517714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal challenges in 3D ICs have driven the need for embedded chip cooling. In this paper, we measured the thermal performance of a two-phase system employing flow boiling in chip-embedded micro-channels utilizing the latent heat of vaporization of dielectric refrigerants (such as R-1234ze) In the present study, an investigation was performed on a 20 mm × 20 mm thermal test vehicle having a heater layer to simulate the heat generation from a state-of-the-art 8-core microprocessor chip and a sensor layer to measure temperature at key locations within the test vehicle. Fluidic channels in the form of radial expanding micro-scale cavities with micro-pin fields were etched into the test vehicle. The micro-pin fields represent the through-silicon-via (TSV) interconnects present in multi-die stacks. The heaters are used to simulate a background heat flux of 20 W/cm2 and individual core heat fluxes of up to 210 W/cm2. This heat generation capability corresponds anywhere from a processor low-power idle mode to a high-power super-turbo mode and beyond. Since the flow resistance in a microchannel for two-phase cooling depends on in-situ heat generation, asymmetric power dissipation due to different power levels in various cores and non-core areas may unbalance the overall flow distribution. Furthermore, it may reduce the local heat transfer rate and even lead to premature failure of working cores. This study aims at understanding the effects of asymmetric heat flux profiles on flow resistance and boiling heat transfer.\",\"PeriodicalId\":426908,\"journal\":{\"name\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2016.7517714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

3D集成电路的热挑战推动了对嵌入式芯片冷却的需求。在这篇文章中,我们测量了两阶段系统的热力性能使用芯片的微细血管中流动沸腾利用介电制冷剂的蒸发潜热(比如r - 1234泽)在目前的研究中,调查了一个20毫米×20毫米热力试验车辆有一个加热器层来模拟热一代从一个先进的8核微处理器芯片和传感器层内的关键位置上测量温度测试车辆。在试验车辆上蚀刻了径向扩展的微尺度腔体和微针场形式的流体通道。微引脚场代表了存在于多芯片堆叠中的通硅通孔(TSV)互连。加热器用于模拟20 W/cm2的背景热流和高达210 W/cm2的单个核心热流。这种发热能力适用于处理器低功耗空闲模式到高功率超级涡轮模式等任何地方。由于两相冷却微通道内的流动阻力取决于原位产热,因此由于不同核心和非核心区域的功率水平不同而导致的不对称功耗可能会使整体流动分布不平衡。此外,它可能会降低局部传热速率,甚至导致工作岩心过早失效。本研究旨在了解不对称热流密度分布对流动阻力和沸腾传热的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boiling sensitivity analysis of asymmetrically heated micro-scale devices
Thermal challenges in 3D ICs have driven the need for embedded chip cooling. In this paper, we measured the thermal performance of a two-phase system employing flow boiling in chip-embedded micro-channels utilizing the latent heat of vaporization of dielectric refrigerants (such as R-1234ze) In the present study, an investigation was performed on a 20 mm × 20 mm thermal test vehicle having a heater layer to simulate the heat generation from a state-of-the-art 8-core microprocessor chip and a sensor layer to measure temperature at key locations within the test vehicle. Fluidic channels in the form of radial expanding micro-scale cavities with micro-pin fields were etched into the test vehicle. The micro-pin fields represent the through-silicon-via (TSV) interconnects present in multi-die stacks. The heaters are used to simulate a background heat flux of 20 W/cm2 and individual core heat fluxes of up to 210 W/cm2. This heat generation capability corresponds anywhere from a processor low-power idle mode to a high-power super-turbo mode and beyond. Since the flow resistance in a microchannel for two-phase cooling depends on in-situ heat generation, asymmetric power dissipation due to different power levels in various cores and non-core areas may unbalance the overall flow distribution. Furthermore, it may reduce the local heat transfer rate and even lead to premature failure of working cores. This study aims at understanding the effects of asymmetric heat flux profiles on flow resistance and boiling heat transfer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical model of graphene-enabled ultra-low power phase change memory ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations Experimental study of bubble dynamics in highly wetting dielectric liquid pool boiling through high-speed video Condensate mobility actuated by microsurface topography and wettability modifications Inverse approach to characterize die-attach thermal interface of light emitting diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1