基于hj双标图的交通矩阵时空分析方案

Francisco Javier Delgado Alvarez, P. G. Villardon
{"title":"基于hj双标图的交通矩阵时空分析方案","authors":"Francisco Javier Delgado Alvarez, P. G. Villardon","doi":"10.1109/IWMN.2015.7322979","DOIUrl":null,"url":null,"abstract":"Since 2002 many works have been published applying Principal Component Analysis (PCA) in the study of network traffic. These investigations have revealed some issues inherent to the temporal and spatial correlations present in the data, which are not considered in PCA. The proposed solutions to these problems include the formulation of a new matrix of data “rearranged” to take these effects into consideration. Nevertheless the “classical” Biplot methods (GH, JK, HJ) reflect both correlations between time intervals and between time series. The Biplot methods provide graphical procedures that offer more information about the behavior of time series than PCA, while making possible the use of more specific quality of representation metrics. In the case of HJ-Biplot, the graphical display obtained has maximum quality of representation for rows and columns.","PeriodicalId":440636,"journal":{"name":"2015 IEEE International Workshop on Measurements & Networking (M&N)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proposal for spatio-temporal analysis of traffic matrices using HJ-biplot\",\"authors\":\"Francisco Javier Delgado Alvarez, P. G. Villardon\",\"doi\":\"10.1109/IWMN.2015.7322979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2002 many works have been published applying Principal Component Analysis (PCA) in the study of network traffic. These investigations have revealed some issues inherent to the temporal and spatial correlations present in the data, which are not considered in PCA. The proposed solutions to these problems include the formulation of a new matrix of data “rearranged” to take these effects into consideration. Nevertheless the “classical” Biplot methods (GH, JK, HJ) reflect both correlations between time intervals and between time series. The Biplot methods provide graphical procedures that offer more information about the behavior of time series than PCA, while making possible the use of more specific quality of representation metrics. In the case of HJ-Biplot, the graphical display obtained has maximum quality of representation for rows and columns.\",\"PeriodicalId\":440636,\"journal\":{\"name\":\"2015 IEEE International Workshop on Measurements & Networking (M&N)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Workshop on Measurements & Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2015.7322979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Workshop on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2015.7322979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自2002年以来,已经发表了许多将主成分分析(PCA)应用于网络流量研究的著作。这些调查揭示了数据中存在的时间和空间相关性所固有的一些问题,这些问题在PCA中没有考虑到。针对这些问题提出的解决办法包括制定一个“重新排列”的新数据矩阵,以考虑到这些影响。然而,“经典”双图方法(GH, JK, HJ)既反映了时间间隔之间的相关性,也反映了时间序列之间的相关性。Biplot方法提供了图形化的过程,提供了比PCA更多的关于时间序列行为的信息,同时使得使用更具体的表示质量度量成为可能。在HJ-Biplot的情况下,所获得的图形显示具有最大的行和列的表示质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A proposal for spatio-temporal analysis of traffic matrices using HJ-biplot
Since 2002 many works have been published applying Principal Component Analysis (PCA) in the study of network traffic. These investigations have revealed some issues inherent to the temporal and spatial correlations present in the data, which are not considered in PCA. The proposed solutions to these problems include the formulation of a new matrix of data “rearranged” to take these effects into consideration. Nevertheless the “classical” Biplot methods (GH, JK, HJ) reflect both correlations between time intervals and between time series. The Biplot methods provide graphical procedures that offer more information about the behavior of time series than PCA, while making possible the use of more specific quality of representation metrics. In the case of HJ-Biplot, the graphical display obtained has maximum quality of representation for rows and columns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of frequency diversity to improve the performance of RSSI-based distance measurements Traffic classification and verification using unsupervised learning of Gaussian Mixture Models Estimation of the harvestable power on wireless sensor nodes Learning the parameters of periodic traffic based on network measurements Power quality in smart distribution grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1