基于深度学习技术的泊松方程求解器研究

Tao Shan, Wei Tang, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, Ji Wu
{"title":"基于深度学习技术的泊松方程求解器研究","authors":"Tao Shan, Wei Tang, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, Ji Wu","doi":"10.1109/EDAPS.2017.8277017","DOIUrl":null,"url":null,"abstract":"In this work, we investigated the feasibility of applying deep learning techniques to solve 2D Poisson's equation. A deep convolutional neural network is set up to predict the distribution of electric potential in 2D. With training data generated from a finite difference solver, the strong approximation capability of the deep convolutional neural network allows it to make correct prediction given information of the source and distribution of permittivity. Numerical experiments show that the predication error can reach below one percent, with a significant reduction in CPU time compared with the traditional solver based on finite difference methods.","PeriodicalId":329279,"journal":{"name":"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Study on a Poisson's equation solver based on deep learning technique\",\"authors\":\"Tao Shan, Wei Tang, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, Ji Wu\",\"doi\":\"10.1109/EDAPS.2017.8277017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigated the feasibility of applying deep learning techniques to solve 2D Poisson's equation. A deep convolutional neural network is set up to predict the distribution of electric potential in 2D. With training data generated from a finite difference solver, the strong approximation capability of the deep convolutional neural network allows it to make correct prediction given information of the source and distribution of permittivity. Numerical experiments show that the predication error can reach below one percent, with a significant reduction in CPU time compared with the traditional solver based on finite difference methods.\",\"PeriodicalId\":329279,\"journal\":{\"name\":\"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS.2017.8277017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2017.8277017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

在这项工作中,我们研究了应用深度学习技术求解二维泊松方程的可行性。建立了一个深度卷积神经网络来预测二维电位的分布。利用有限差分解算器生成的训练数据,深度卷积神经网络具有较强的近似能力,可以在给定介电常数来源和分布信息的情况下做出正确的预测。数值实验表明,与传统的基于有限差分方法的求解器相比,预测误差可以达到1%以下,显著减少了CPU时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on a Poisson's equation solver based on deep learning technique
In this work, we investigated the feasibility of applying deep learning techniques to solve 2D Poisson's equation. A deep convolutional neural network is set up to predict the distribution of electric potential in 2D. With training data generated from a finite difference solver, the strong approximation capability of the deep convolutional neural network allows it to make correct prediction given information of the source and distribution of permittivity. Numerical experiments show that the predication error can reach below one percent, with a significant reduction in CPU time compared with the traditional solver based on finite difference methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signal and power integrity (SI/PI) analysis of heterogeneous integration using embedded multi-die interconnect bridge (EMIB) technology for high bandwidth memory (HBM) Study on a Poisson's equation solver based on deep learning technique Filtering balanced-to-single-ended power divider with arbitrary power division ratio FDTD modeling of reconfigurable reflectarray for generation of vortex radio waves High performance balanced-to-unbalanced filtering power divider
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1