J. Campillo, Nima Ghaviha, Nathan Zimmerman, E. Dahlquist
{"title":"液流电池在重型车辆中使用潜力","authors":"J. Campillo, Nima Ghaviha, Nathan Zimmerman, E. Dahlquist","doi":"10.1109/ESARS.2015.7101496","DOIUrl":null,"url":null,"abstract":"Although batteries have been used in personal vehicles for more than a hundred years, the cost of the technology, limitation in range, absence of sufficient recharging infrastructure and rapid development of internal combustion engines during the mid-twentieth century limited its use to very niche applications. More recently, a global need for reducing CO2 emissions from fossil fuel usage and the great developments in power systems as well as in battery technology offers electric vehicles the possibility to return to the market, not just for personal use but also for a wide variety of transportation applications. In the present paper, a feasibility study for using flow batteries in heavy vehicles, more specifically, construction equipment is presented. The authors used measured energy demand profiles for different operation conditions of a wheel loader and developed a simulation model for a vanadium redox flow battery to test the performance of this vehicle using a flow battery. Additionally, the authors did a short theoretical analysis for the potential for flow batteries in train transportation, focusing on the requirements and limitations of the technology for this application.","PeriodicalId":287492,"journal":{"name":"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)","volume":"1870 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Flow batteries use potential in heavy vehicles\",\"authors\":\"J. Campillo, Nima Ghaviha, Nathan Zimmerman, E. Dahlquist\",\"doi\":\"10.1109/ESARS.2015.7101496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although batteries have been used in personal vehicles for more than a hundred years, the cost of the technology, limitation in range, absence of sufficient recharging infrastructure and rapid development of internal combustion engines during the mid-twentieth century limited its use to very niche applications. More recently, a global need for reducing CO2 emissions from fossil fuel usage and the great developments in power systems as well as in battery technology offers electric vehicles the possibility to return to the market, not just for personal use but also for a wide variety of transportation applications. In the present paper, a feasibility study for using flow batteries in heavy vehicles, more specifically, construction equipment is presented. The authors used measured energy demand profiles for different operation conditions of a wheel loader and developed a simulation model for a vanadium redox flow battery to test the performance of this vehicle using a flow battery. Additionally, the authors did a short theoretical analysis for the potential for flow batteries in train transportation, focusing on the requirements and limitations of the technology for this application.\",\"PeriodicalId\":287492,\"journal\":{\"name\":\"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)\",\"volume\":\"1870 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESARS.2015.7101496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS.2015.7101496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Although batteries have been used in personal vehicles for more than a hundred years, the cost of the technology, limitation in range, absence of sufficient recharging infrastructure and rapid development of internal combustion engines during the mid-twentieth century limited its use to very niche applications. More recently, a global need for reducing CO2 emissions from fossil fuel usage and the great developments in power systems as well as in battery technology offers electric vehicles the possibility to return to the market, not just for personal use but also for a wide variety of transportation applications. In the present paper, a feasibility study for using flow batteries in heavy vehicles, more specifically, construction equipment is presented. The authors used measured energy demand profiles for different operation conditions of a wheel loader and developed a simulation model for a vanadium redox flow battery to test the performance of this vehicle using a flow battery. Additionally, the authors did a short theoretical analysis for the potential for flow batteries in train transportation, focusing on the requirements and limitations of the technology for this application.