一种用于雾和边缘计算的时延均衡算法

Gabriele Proietti Mattia, Marco Magnani, R. Beraldi
{"title":"一种用于雾和边缘计算的时延均衡算法","authors":"Gabriele Proietti Mattia, Marco Magnani, R. Beraldi","doi":"10.1145/3551659.3559048","DOIUrl":null,"url":null,"abstract":"When deploying a distributed application in the Fog or Edge computing environments, the average service latency among all the involved nodes can be an indicator of how much a node is loaded with respect to the other. Indeed, only considering the average CPU time, or the RAM utilisation, for example, does not give a clear depiction of the load situation because these parameters are application- and hardware-agnostic. They do not give any information about how the application is performing from the user perspective and they cannot be used for a QoS-oriented load balancing of the system. Moreover, due to the displacement of the nodes and the heterogeneity of the computing devices the necessity of a load balancing algorithm is clear. In this paper, we propose a load balancing approach that is focused on the service latency with the objective to level it across all the nodes in a fully decentralized manner, in this way no user will experience a worse QoS than the other. By providing a differential model of the system and an adaptive heuristic to find the solution to the problem, we show both in simulation and in a real-world deployment that our approach is able to level the service latency among a set of heterogeneous nodes organized in different topologies.","PeriodicalId":423926,"journal":{"name":"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Latency-levelling Load Balancing Algorithm for Fog and Edge Computing\",\"authors\":\"Gabriele Proietti Mattia, Marco Magnani, R. Beraldi\",\"doi\":\"10.1145/3551659.3559048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When deploying a distributed application in the Fog or Edge computing environments, the average service latency among all the involved nodes can be an indicator of how much a node is loaded with respect to the other. Indeed, only considering the average CPU time, or the RAM utilisation, for example, does not give a clear depiction of the load situation because these parameters are application- and hardware-agnostic. They do not give any information about how the application is performing from the user perspective and they cannot be used for a QoS-oriented load balancing of the system. Moreover, due to the displacement of the nodes and the heterogeneity of the computing devices the necessity of a load balancing algorithm is clear. In this paper, we propose a load balancing approach that is focused on the service latency with the objective to level it across all the nodes in a fully decentralized manner, in this way no user will experience a worse QoS than the other. By providing a differential model of the system and an adaptive heuristic to find the solution to the problem, we show both in simulation and in a real-world deployment that our approach is able to level the service latency among a set of heterogeneous nodes organized in different topologies.\",\"PeriodicalId\":423926,\"journal\":{\"name\":\"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551659.3559048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551659.3559048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当在雾或边缘计算环境中部署分布式应用程序时,所有相关节点之间的平均服务延迟可以作为一个节点相对于其他节点负载多少的指标。实际上,仅考虑平均CPU时间或RAM利用率并不能清楚地描述负载情况,因为这些参数与应用程序和硬件无关。从用户的角度来看,它们不提供有关应用程序如何执行的任何信息,并且它们不能用于系统的面向qos的负载平衡。此外,由于节点的位移和计算设备的异构性,负载平衡算法的必要性是明确的。在本文中,我们提出了一种专注于服务延迟的负载平衡方法,其目标是以完全分散的方式在所有节点上进行均衡,这样就不会有用户体验到比其他用户更差的QoS。通过提供系统的差分模型和自适应启发式方法来找到问题的解决方案,我们在模拟和实际部署中都表明,我们的方法能够在以不同拓扑组织的一组异构节点之间平衡服务延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Latency-levelling Load Balancing Algorithm for Fog and Edge Computing
When deploying a distributed application in the Fog or Edge computing environments, the average service latency among all the involved nodes can be an indicator of how much a node is loaded with respect to the other. Indeed, only considering the average CPU time, or the RAM utilisation, for example, does not give a clear depiction of the load situation because these parameters are application- and hardware-agnostic. They do not give any information about how the application is performing from the user perspective and they cannot be used for a QoS-oriented load balancing of the system. Moreover, due to the displacement of the nodes and the heterogeneity of the computing devices the necessity of a load balancing algorithm is clear. In this paper, we propose a load balancing approach that is focused on the service latency with the objective to level it across all the nodes in a fully decentralized manner, in this way no user will experience a worse QoS than the other. By providing a differential model of the system and an adaptive heuristic to find the solution to the problem, we show both in simulation and in a real-world deployment that our approach is able to level the service latency among a set of heterogeneous nodes organized in different topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interference Aware Heuristics to Optimize Power Beacons for Battery-less WSNs The Interplay Between Intelligent Networks and Enabling Technologies for Future Wireless Networks A Novel Mixed Method of Machine Learning Based Models in Vehicular Traffic Flow Prediction Characterizing Wi-Fi Probing Behavior for Privacy-Preserving Crowdsensing Anonymized Counting of Nonstationary Wi-Fi Devices When Monitoring Crowds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1