矢量量化中码本设计的替代方法

V. Delport
{"title":"矢量量化中码本设计的替代方法","authors":"V. Delport","doi":"10.1109/DCC.1995.515595","DOIUrl":null,"url":null,"abstract":"A vector quantizer maps a multidimensional vector space into a finite subset of reproduction vectors called a codebook. For codebook optimization the well known LBG algorithm or a simulated annealing technique are commonly used. Two alternative methods the fuzzy-c-mean (FCM) and a genetic algorithm (GA) are proposed. In order to illustrate the algorithm performance a DCT-VQ has been chosen. The fixed partition scheme based on the mean energy per coefficient is shown for the test image \"Lena\".","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Alternative methods for codebook design in vector quantization\",\"authors\":\"V. Delport\",\"doi\":\"10.1109/DCC.1995.515595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vector quantizer maps a multidimensional vector space into a finite subset of reproduction vectors called a codebook. For codebook optimization the well known LBG algorithm or a simulated annealing technique are commonly used. Two alternative methods the fuzzy-c-mean (FCM) and a genetic algorithm (GA) are proposed. In order to illustrate the algorithm performance a DCT-VQ has been chosen. The fixed partition scheme based on the mean energy per coefficient is shown for the test image \\\"Lena\\\".\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矢量量化器将多维矢量空间映射到称为码本的复制矢量的有限子集。对于码本优化,通常使用众所周知的LBG算法或模拟退火技术。提出了模糊均值(FCM)和遗传算法(GA)两种替代方法。为了说明算法的性能,选择了DCT-VQ。对测试图像“Lena”给出了基于每系数平均能量的固定分割方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alternative methods for codebook design in vector quantization
A vector quantizer maps a multidimensional vector space into a finite subset of reproduction vectors called a codebook. For codebook optimization the well known LBG algorithm or a simulated annealing technique are commonly used. Two alternative methods the fuzzy-c-mean (FCM) and a genetic algorithm (GA) are proposed. In order to illustrate the algorithm performance a DCT-VQ has been chosen. The fixed partition scheme based on the mean energy per coefficient is shown for the test image "Lena".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplication-free subband coding of color images Constraining the size of the instantaneous alphabet in trellis quantizers Classified conditional entropy coding of LSP parameters Lattice-based designs of direct sum codebooks for vector quantization On the performance of affine index assignments for redundancy free source-channel coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1