{"title":"CT三维总体病灶分割","authors":"M. Jolly, L. Grady","doi":"10.1109/ISBI.2008.4541116","DOIUrl":null,"url":null,"abstract":"This paper describes a general purpose algorithm to segment any kind of lesions in CT images. The algorithm expects a click or a stroke inside the lesion from the user and learns gray level properties on the fly. It then uses the random walker algorithm and combines multiple 2D segmentation results to produce the final 3D segmentation of the lesion. Quantitative evaluation on 293 lesions demonstrates that the method is ready for clinical use.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"3D general lesion segmentation in CT\",\"authors\":\"M. Jolly, L. Grady\",\"doi\":\"10.1109/ISBI.2008.4541116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a general purpose algorithm to segment any kind of lesions in CT images. The algorithm expects a click or a stroke inside the lesion from the user and learns gray level properties on the fly. It then uses the random walker algorithm and combines multiple 2D segmentation results to produce the final 3D segmentation of the lesion. Quantitative evaluation on 293 lesions demonstrates that the method is ready for clinical use.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

本文描述了一种通用的CT图像病灶分割算法。该算法期望用户在病灶内部点击或笔画,并动态学习灰度属性。然后使用随机行走算法,结合多个二维分割结果,得到病灶的最终三维分割。对293个病变的定量评价表明,该方法可用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D general lesion segmentation in CT
This paper describes a general purpose algorithm to segment any kind of lesions in CT images. The algorithm expects a click or a stroke inside the lesion from the user and learns gray level properties on the fly. It then uses the random walker algorithm and combines multiple 2D segmentation results to produce the final 3D segmentation of the lesion. Quantitative evaluation on 293 lesions demonstrates that the method is ready for clinical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1