热电冷却装置内热结的瞬态分析

M.J. Nagy, R. Buist
{"title":"热电冷却装置内热结的瞬态分析","authors":"M.J. Nagy, R. Buist","doi":"10.1109/ICT.1996.553319","DOIUrl":null,"url":null,"abstract":"The performance of a thermoelectric (TE) heat exchanger assembly is greatly affected by the quality of the thermal junctions connecting the modules and the mounting surfaces of the heat/cold sinks. The quality of this junction, in turn is affected by many different variables. These include heat sink surface quality, quantity of thermal grease, contaminates in the thermal grease, assembly screw torque, tapped hole quality, surface finish of the modules and the variance in module heights. Until now, junction quality could only be verified by disassembly of the heat exchanger or inferred from a full cooling performance test of the assembly. This paper details a new, transient test method which accurately and dependably characterizes the module-to-heat-sink thermal junctions. A small current is applied to the TE modules in a thermoelectric assembly. This induces a small temperature difference across the module and between the ceramics of the module and its neighboring heat/cold sink. Power is then removed and the module's ceramics return to the temperature of its neighboring heat sink. The rate of temperature decay is directly proportional to the junction quality. Thus, the residual Seebeck decay waveform directly correlates to thermal junction quality, providing the means for rapidly and accurately characterizing assembly quality.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transient analysis of thermal junctions within a thermoelectric cooling assembly\",\"authors\":\"M.J. Nagy, R. Buist\",\"doi\":\"10.1109/ICT.1996.553319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a thermoelectric (TE) heat exchanger assembly is greatly affected by the quality of the thermal junctions connecting the modules and the mounting surfaces of the heat/cold sinks. The quality of this junction, in turn is affected by many different variables. These include heat sink surface quality, quantity of thermal grease, contaminates in the thermal grease, assembly screw torque, tapped hole quality, surface finish of the modules and the variance in module heights. Until now, junction quality could only be verified by disassembly of the heat exchanger or inferred from a full cooling performance test of the assembly. This paper details a new, transient test method which accurately and dependably characterizes the module-to-heat-sink thermal junctions. A small current is applied to the TE modules in a thermoelectric assembly. This induces a small temperature difference across the module and between the ceramics of the module and its neighboring heat/cold sink. Power is then removed and the module's ceramics return to the temperature of its neighboring heat sink. The rate of temperature decay is directly proportional to the junction quality. Thus, the residual Seebeck decay waveform directly correlates to thermal junction quality, providing the means for rapidly and accurately characterizing assembly quality.\",\"PeriodicalId\":447328,\"journal\":{\"name\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1996.553319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

热电(TE)热交换器组件的性能很大程度上受到连接模块的热结和热/冷散热器安装表面的质量的影响。这种连接的质量反过来又受到许多不同变量的影响。这些包括散热器表面质量、导热脂的数量、导热脂中的污染物、装配螺钉扭矩、螺纹孔质量、模块表面光洁度和模块高度的差异。到目前为止,连接处的质量只能通过拆卸热交换器来验证,或者通过对组件进行全面的冷却性能测试来推断。本文详细介绍了一种新的瞬态测试方法,该方法可以准确可靠地表征模块到散热器的热结。在热电组件中的TE模块上施加小电流。这在整个模块之间以及模块的陶瓷与邻近的热/冷水槽之间产生了很小的温差。然后移除电源,模块的陶瓷恢复到邻近散热器的温度。温度衰减的速率与结的质量成正比。因此,残余塞贝克衰减波形与热结质量直接相关,为快速准确地表征装配质量提供了手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transient analysis of thermal junctions within a thermoelectric cooling assembly
The performance of a thermoelectric (TE) heat exchanger assembly is greatly affected by the quality of the thermal junctions connecting the modules and the mounting surfaces of the heat/cold sinks. The quality of this junction, in turn is affected by many different variables. These include heat sink surface quality, quantity of thermal grease, contaminates in the thermal grease, assembly screw torque, tapped hole quality, surface finish of the modules and the variance in module heights. Until now, junction quality could only be verified by disassembly of the heat exchanger or inferred from a full cooling performance test of the assembly. This paper details a new, transient test method which accurately and dependably characterizes the module-to-heat-sink thermal junctions. A small current is applied to the TE modules in a thermoelectric assembly. This induces a small temperature difference across the module and between the ceramics of the module and its neighboring heat/cold sink. Power is then removed and the module's ceramics return to the temperature of its neighboring heat sink. The rate of temperature decay is directly proportional to the junction quality. Thus, the residual Seebeck decay waveform directly correlates to thermal junction quality, providing the means for rapidly and accurately characterizing assembly quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermoelectric generation and related properties of conventional type module based on Si-Ge alloy Doping with organic halogen-containing compounds the Bi2(Te,Se)3 solid solutions The theoretical analysis of the thermoelectric semiconducting crystalline materials figure of merit Thermoelectric coolers with small response time Effective figure of merit increase at the large temperature drops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1