Yunlei Yin, Wenxiang Dong, Zhenfei Zhan, Junming Li
{"title":"特定主题儿童乘员建模的峰值选择RBF网格变形方法","authors":"Yunlei Yin, Wenxiang Dong, Zhenfei Zhan, Junming Li","doi":"10.1115/IMECE2018-88398","DOIUrl":null,"url":null,"abstract":"The mesh morphing method is widely applied in building subject-specific human finite element models. However, there are many problems yet to be resolved when applying the mesh morphing method in subject-specific modeling, such as calculation difficulties and low morphing accuracy. To solve these problems above, an efficient peak-selection RBF mesh morphing method is proposed in the paper. Firstly, by comparing different types of radial basis functions, an optimal kernel function is selected to improve morphing accuracy. Secondly, the landmarks are reduced by selecting multiple peak nodes from the object surfaces, so as to reduce iteration steps and improve the mesh generation efficiency. The proposed peak-selection Radial Basis Function (RBF) mesh morphing method is further demonstrated through a subject-specific child finite element modeling problem. This mesh morphing method has important significance for analyzing the occupant injury of different body features in motor vehicle crashes.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Peak-Selection RBF Mesh Morphing Method for Subject-Specific Child Occupant Modeling\",\"authors\":\"Yunlei Yin, Wenxiang Dong, Zhenfei Zhan, Junming Li\",\"doi\":\"10.1115/IMECE2018-88398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mesh morphing method is widely applied in building subject-specific human finite element models. However, there are many problems yet to be resolved when applying the mesh morphing method in subject-specific modeling, such as calculation difficulties and low morphing accuracy. To solve these problems above, an efficient peak-selection RBF mesh morphing method is proposed in the paper. Firstly, by comparing different types of radial basis functions, an optimal kernel function is selected to improve morphing accuracy. Secondly, the landmarks are reduced by selecting multiple peak nodes from the object surfaces, so as to reduce iteration steps and improve the mesh generation efficiency. The proposed peak-selection Radial Basis Function (RBF) mesh morphing method is further demonstrated through a subject-specific child finite element modeling problem. This mesh morphing method has important significance for analyzing the occupant injury of different body features in motor vehicle crashes.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-88398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Peak-Selection RBF Mesh Morphing Method for Subject-Specific Child Occupant Modeling
The mesh morphing method is widely applied in building subject-specific human finite element models. However, there are many problems yet to be resolved when applying the mesh morphing method in subject-specific modeling, such as calculation difficulties and low morphing accuracy. To solve these problems above, an efficient peak-selection RBF mesh morphing method is proposed in the paper. Firstly, by comparing different types of radial basis functions, an optimal kernel function is selected to improve morphing accuracy. Secondly, the landmarks are reduced by selecting multiple peak nodes from the object surfaces, so as to reduce iteration steps and improve the mesh generation efficiency. The proposed peak-selection Radial Basis Function (RBF) mesh morphing method is further demonstrated through a subject-specific child finite element modeling problem. This mesh morphing method has important significance for analyzing the occupant injury of different body features in motor vehicle crashes.