{"title":"多位点网关技术在CRISPR/ cas9介导的敲入系统中构建供体DNA质粒的应用","authors":"Takeshi Yasuda, Katsushi Tajima","doi":"10.5772/INTECHOPEN.80775","DOIUrl":null,"url":null,"abstract":"The clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 method is a powerful tool for genome editing, by introducing a DNA double-strand break (DSB) at the specific site. The gene knock-out can be achieved by the deletion or inser - tion at the CRISPR/Cas9-mediated DSB site by error-prone nonhomologous end joining repair in targeted cells. However, the gene knock-in is still difficult as compared to the knock-out, because of the low efficiency of homology directed repair with donor DNA in cells. Therefore, to efficiently select the knock-in cells, we developed a complicated donor DNA plasmid containing an antibiotic-resistance gene, in addition to the knock-in sequence and the two homology arms. MultiSite Gateway technology is a useful tool for constructing this complicated plasmid. We describe the MultiSite Gateway technology and provide an overview of the DSB repair pathways to clarify the knock-out and knock- in methods by the CRISPR/Cas9 system.","PeriodicalId":336265,"journal":{"name":"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MultiSite Gateway Technology Is Useful for Donor DNA Plasmid Construction in CRISPR/Cas9-Mediated Knock-In System\",\"authors\":\"Takeshi Yasuda, Katsushi Tajima\",\"doi\":\"10.5772/INTECHOPEN.80775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 method is a powerful tool for genome editing, by introducing a DNA double-strand break (DSB) at the specific site. The gene knock-out can be achieved by the deletion or inser - tion at the CRISPR/Cas9-mediated DSB site by error-prone nonhomologous end joining repair in targeted cells. However, the gene knock-in is still difficult as compared to the knock-out, because of the low efficiency of homology directed repair with donor DNA in cells. Therefore, to efficiently select the knock-in cells, we developed a complicated donor DNA plasmid containing an antibiotic-resistance gene, in addition to the knock-in sequence and the two homology arms. MultiSite Gateway technology is a useful tool for constructing this complicated plasmid. We describe the MultiSite Gateway technology and provide an overview of the DSB repair pathways to clarify the knock-out and knock- in methods by the CRISPR/Cas9 system.\",\"PeriodicalId\":336265,\"journal\":{\"name\":\"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MultiSite Gateway Technology Is Useful for Donor DNA Plasmid Construction in CRISPR/Cas9-Mediated Knock-In System
The clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 method is a powerful tool for genome editing, by introducing a DNA double-strand break (DSB) at the specific site. The gene knock-out can be achieved by the deletion or inser - tion at the CRISPR/Cas9-mediated DSB site by error-prone nonhomologous end joining repair in targeted cells. However, the gene knock-in is still difficult as compared to the knock-out, because of the low efficiency of homology directed repair with donor DNA in cells. Therefore, to efficiently select the knock-in cells, we developed a complicated donor DNA plasmid containing an antibiotic-resistance gene, in addition to the knock-in sequence and the two homology arms. MultiSite Gateway technology is a useful tool for constructing this complicated plasmid. We describe the MultiSite Gateway technology and provide an overview of the DSB repair pathways to clarify the knock-out and knock- in methods by the CRISPR/Cas9 system.