基于SVM算法的乳腺超声肿瘤分类

P. Acevedo, M. Vazquez
{"title":"基于SVM算法的乳腺超声肿瘤分类","authors":"P. Acevedo, M. Vazquez","doi":"10.1109/CSCI49370.2019.00128","DOIUrl":null,"url":null,"abstract":"In this work tumor classification was performed using K-means and GLCM algorithms to segment ultrasound images. In order to apply Stavros criteria, a lineal support vector machine (SVM) algorithm was used to classify benign and malignant tumors. 94% of echographies were correctly classified.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Classification of Tumors in Breast Echography Using a SVM Algorithm\",\"authors\":\"P. Acevedo, M. Vazquez\",\"doi\":\"10.1109/CSCI49370.2019.00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work tumor classification was performed using K-means and GLCM algorithms to segment ultrasound images. In order to apply Stavros criteria, a lineal support vector machine (SVM) algorithm was used to classify benign and malignant tumors. 94% of echographies were correctly classified.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在这项工作中,肿瘤分类使用K-means和GLCM算法来分割超声图像。为了应用Stavros准则,采用线性支持向量机(SVM)算法对良恶性肿瘤进行分类。94%的超声图像分类正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Tumors in Breast Echography Using a SVM Algorithm
In this work tumor classification was performed using K-means and GLCM algorithms to segment ultrasound images. In order to apply Stavros criteria, a lineal support vector machine (SVM) algorithm was used to classify benign and malignant tumors. 94% of echographies were correctly classified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1