基于klfda的决策融合检测胃x线图像幽门螺杆菌感染

Kenta Ishihara, Takahiro Ogawa, M. Haseyama
{"title":"基于klfda的决策融合检测胃x线图像幽门螺杆菌感染","authors":"Kenta Ishihara, Takahiro Ogawa, M. Haseyama","doi":"10.1109/GCCE.2015.7398563","DOIUrl":null,"url":null,"abstract":"This paper presents the performance improvement of Helicobacter pylori (H. pylori) infection detection using Kernel Local Fisher Discriminant Analysis (KLFDA)-based decision fusion. As the biggest contribution of this paper, the proposed method extracts more discriminative features based on KLFDA for the decision fusion. Since the decision fusion employed in this paper can consider not only the detection results but also the visual features, by calculating more discriminative features via KLFDA, more accurate decision fusion becomes feasible. Furthermore, experimental results show the effectiveness of the proposed method.","PeriodicalId":363743,"journal":{"name":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Helicobacter pylori infection detection from gastric X-ray images using KLFDA-based decision fusion\",\"authors\":\"Kenta Ishihara, Takahiro Ogawa, M. Haseyama\",\"doi\":\"10.1109/GCCE.2015.7398563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the performance improvement of Helicobacter pylori (H. pylori) infection detection using Kernel Local Fisher Discriminant Analysis (KLFDA)-based decision fusion. As the biggest contribution of this paper, the proposed method extracts more discriminative features based on KLFDA for the decision fusion. Since the decision fusion employed in this paper can consider not only the detection results but also the visual features, by calculating more discriminative features via KLFDA, more accurate decision fusion becomes feasible. Furthermore, experimental results show the effectiveness of the proposed method.\",\"PeriodicalId\":363743,\"journal\":{\"name\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2015.7398563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2015.7398563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了基于核局部Fisher判别分析(Kernel Local Fisher Discriminant Analysis, KLFDA)的决策融合方法,提高了幽门螺杆菌(Helicobacter pylori)感染检测的性能。本文最大的贡献是基于KLFDA提取更多的判别特征进行决策融合。由于本文采用的决策融合不仅考虑检测结果,而且考虑视觉特征,因此通过KLFDA计算更多的判别特征,使得更准确的决策融合成为可能。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Helicobacter pylori infection detection from gastric X-ray images using KLFDA-based decision fusion
This paper presents the performance improvement of Helicobacter pylori (H. pylori) infection detection using Kernel Local Fisher Discriminant Analysis (KLFDA)-based decision fusion. As the biggest contribution of this paper, the proposed method extracts more discriminative features based on KLFDA for the decision fusion. Since the decision fusion employed in this paper can consider not only the detection results but also the visual features, by calculating more discriminative features via KLFDA, more accurate decision fusion becomes feasible. Furthermore, experimental results show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient data loading mechanism for list-style UI with content separation and parallel processing in mobile systems Extension with intelligent agents for the spoken dialogue system for smartphones Story creation approach for sensor network application development Block-based SRAM architecture and thermal-aware memory mappings for three-dimensional channel decoding systems On an efficient masking system using human head tracking parametric speaker system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1