GoPro:一种移动边缘计算系统的低复杂度任务分配算法

Arghyadip Roy, Nilanjan Biswas
{"title":"GoPro:一种移动边缘计算系统的低复杂度任务分配算法","authors":"Arghyadip Roy, Nilanjan Biswas","doi":"10.1109/NCC55593.2022.9806731","DOIUrl":null,"url":null,"abstract":"In an Internet of Things (IoT) based network, tasks arriving at individual nodes can be processed in-device or at a local Mobile Edge Computing (MEC) server. In this paper, we focus on the optimal resource allocation problem for tasks arriving in an MEC based IoT network. To address the inherent trade-off between the computation time and the power consumption, we aim to minimize the average power consumption subject to a constraint on the deadline violation probability. The problem is formulated as a Constrained Markov Decision Process (CMDP) problem. To address the high complexities of achieving optimality, we propose a low-complexity heuristic task scheduling scheme. Efficacy of our approach is demonstrated using simulations.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GoPro: a Low Complexity Task Allocation Algorithm for a Mobile Edge Computing System\",\"authors\":\"Arghyadip Roy, Nilanjan Biswas\",\"doi\":\"10.1109/NCC55593.2022.9806731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an Internet of Things (IoT) based network, tasks arriving at individual nodes can be processed in-device or at a local Mobile Edge Computing (MEC) server. In this paper, we focus on the optimal resource allocation problem for tasks arriving in an MEC based IoT network. To address the inherent trade-off between the computation time and the power consumption, we aim to minimize the average power consumption subject to a constraint on the deadline violation probability. The problem is formulated as a Constrained Markov Decision Process (CMDP) problem. To address the high complexities of achieving optimality, we propose a low-complexity heuristic task scheduling scheme. Efficacy of our approach is demonstrated using simulations.\",\"PeriodicalId\":403870,\"journal\":{\"name\":\"2022 National Conference on Communications (NCC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC55593.2022.9806731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在基于物联网(IoT)的网络中,到达单个节点的任务可以在设备内或在本地移动边缘计算(MEC)服务器上处理。在本文中,我们专注于基于MEC的物联网网络中到达任务的最优资源分配问题。为了解决计算时间和功耗之间的内在权衡,我们的目标是在约束截止日期违反概率的情况下最小化平均功耗。将该问题表述为约束马尔可夫决策过程问题。为了解决实现最优性的高复杂性,我们提出了一种低复杂性的启发式任务调度方案。通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GoPro: a Low Complexity Task Allocation Algorithm for a Mobile Edge Computing System
In an Internet of Things (IoT) based network, tasks arriving at individual nodes can be processed in-device or at a local Mobile Edge Computing (MEC) server. In this paper, we focus on the optimal resource allocation problem for tasks arriving in an MEC based IoT network. To address the inherent trade-off between the computation time and the power consumption, we aim to minimize the average power consumption subject to a constraint on the deadline violation probability. The problem is formulated as a Constrained Markov Decision Process (CMDP) problem. To address the high complexities of achieving optimality, we propose a low-complexity heuristic task scheduling scheme. Efficacy of our approach is demonstrated using simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoRAL: Coordinated Resource Allocation for Intercell D2D Communication in Cellular Networks Modelling the Impact of Multiple Pro-inflammatory Cytokines Using Molecular Communication STPGANsFusion: Structure and Texture Preserving Generative Adversarial Networks for Multi-modal Medical Image Fusion Intelligent On/Off Switching of mmRSUs in Urban Vehicular Networks: A Deep Q-Learning Approach Classification of Auscultation Sounds into Objective Spirometry Findings using MVMD and 3D CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1