锌掺杂钇铁石榴石纳米颗粒的磁性、直流电性和阻抗特性

Dao Thi Thuy Nguyet, N. P. Duong, L. N. Anh
{"title":"锌掺杂钇铁石榴石纳米颗粒的磁性、直流电性和阻抗特性","authors":"Dao Thi Thuy Nguyet, N. P. Duong, L. N. Anh","doi":"10.25073/2588-1124/vnumap.4786","DOIUrl":null,"url":null,"abstract":"Y3Fe5-xZnxO12 with x = 0; 0.02; 0.04; 0.06; 0.08; 0.1 (YIG) particle materials were fabricated by sol-gel method combined with heat treatment at 900 °C and 1,000 °C with different annealing times (2 h and 5 h) and heating rates (5 °C/min and 2 °C/min).  X-ray diffraction patterns show that the obtained samples are single crystalline phases at the condition of an annealing temperature of 900 °C for 5 h and a heating rate of 2 degrees/min. FESEM images of the samples show particle sizes from the submicron to the micrometer. The magnetization of the samples decreases as the doping concentration increases. I-V characteristics and complex impedance spectra at room temperature of samples were measured. The results show that the resistivity value of the doped samples decreases in the range of 5-6 orders in magnitude compared with that of the pure YIG sample. The contribution of the grain boundaries to the impedance was analyzed. The conducting process is explained due to the tunneling of charge carriers across the grain boundary.","PeriodicalId":303178,"journal":{"name":"VNU Journal of Science: Mathematics - Physics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic, DC Electrical, and Impedance Properties of Zn Doped Yttrium Iron Garnet Nanoparticles\",\"authors\":\"Dao Thi Thuy Nguyet, N. P. Duong, L. N. Anh\",\"doi\":\"10.25073/2588-1124/vnumap.4786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Y3Fe5-xZnxO12 with x = 0; 0.02; 0.04; 0.06; 0.08; 0.1 (YIG) particle materials were fabricated by sol-gel method combined with heat treatment at 900 °C and 1,000 °C with different annealing times (2 h and 5 h) and heating rates (5 °C/min and 2 °C/min).  X-ray diffraction patterns show that the obtained samples are single crystalline phases at the condition of an annealing temperature of 900 °C for 5 h and a heating rate of 2 degrees/min. FESEM images of the samples show particle sizes from the submicron to the micrometer. The magnetization of the samples decreases as the doping concentration increases. I-V characteristics and complex impedance spectra at room temperature of samples were measured. The results show that the resistivity value of the doped samples decreases in the range of 5-6 orders in magnitude compared with that of the pure YIG sample. The contribution of the grain boundaries to the impedance was analyzed. The conducting process is explained due to the tunneling of charge carriers across the grain boundary.\",\"PeriodicalId\":303178,\"journal\":{\"name\":\"VNU Journal of Science: Mathematics - Physics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Mathematics - Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1124/vnumap.4786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Mathematics - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1124/vnumap.4786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Y3Fe5-xZnxO12, x = 0;0.02;0.04;0.06;0.08;采用溶胶-凝胶法制备0.1 (YIG)颗粒材料,并在900℃和1000℃下进行热处理,退火时间分别为2 h和5 h,加热速率分别为5℃/min和2℃/min。x射线衍射图表明,在900℃退火5 h、升温速度2℃/min的条件下,得到的样品为单晶相。样品的FESEM图像显示颗粒大小从亚微米到微米。样品的磁化强度随掺杂浓度的增加而降低。测量了样品在室温下的I-V特性和复阻抗谱。结果表明,掺杂样品的电阻率值与纯YIG样品相比降低了5-6个数量级。分析了晶界对阻抗的贡献。由于载流子在晶界上的隧穿,解释了导电过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic, DC Electrical, and Impedance Properties of Zn Doped Yttrium Iron Garnet Nanoparticles
Y3Fe5-xZnxO12 with x = 0; 0.02; 0.04; 0.06; 0.08; 0.1 (YIG) particle materials were fabricated by sol-gel method combined with heat treatment at 900 °C and 1,000 °C with different annealing times (2 h and 5 h) and heating rates (5 °C/min and 2 °C/min).  X-ray diffraction patterns show that the obtained samples are single crystalline phases at the condition of an annealing temperature of 900 °C for 5 h and a heating rate of 2 degrees/min. FESEM images of the samples show particle sizes from the submicron to the micrometer. The magnetization of the samples decreases as the doping concentration increases. I-V characteristics and complex impedance spectra at room temperature of samples were measured. The results show that the resistivity value of the doped samples decreases in the range of 5-6 orders in magnitude compared with that of the pure YIG sample. The contribution of the grain boundaries to the impedance was analyzed. The conducting process is explained due to the tunneling of charge carriers across the grain boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of Strontium Substituted Hydroxyapatite Coating on Titanium Via Hydrothermal Method Spheric Aberration Evaluation of Thin Lens by Ray Transfer Matrix Numerical Analysis of Optical Properties Using Octagonal Shaped Ge15As15Se17Te53 Chalcogenide Photonic Crystal Fiber Structural Properties of Amorphous Vanadium Pentoxide Under Compression Solvability and Stability of Switched Discrete-time Singular Systems with the Same Switching Rules in Coefficient Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1