找到它们的一个种子:通过关联挖掘意见特征

Zhen Hai, Kuiyu Chang, G. Cong
{"title":"找到它们的一个种子:通过关联挖掘意见特征","authors":"Zhen Hai, Kuiyu Chang, G. Cong","doi":"10.1145/2396761.2396797","DOIUrl":null,"url":null,"abstract":"Feature-based opinion analysis has attracted extensive attention recently. Identifying features associated with opinions expressed in reviews is essential for fine-grained opinion mining. One approach is to exploit the dependency relations that occur naturally between features and opinion words, and among features (or opinion words) themselves. In this paper, we propose a generalized approach to opinion feature extraction by incorporating robust statistical association analysis in a bootstrapping framework. The new approach starts with a small set of feature seeds, on which it iteratively enlarges by mining feature-opinion, feature-feature, and opinion-opinion dependency relations. Two association model types, namely likelihood ratio tests (LRT) and latent semantic analysis (LSA), are proposed for computing the pair-wise associations between terms (features or opinions). We accordingly propose two robust bootstrapping approaches, LRTBOOT and LSABOOT, both of which need just a handful of initial feature seeds to bootstrap opinion feature extraction. We benchmarked LRTBOOT and LSABOOT against existing approaches on a large number of real-life reviews crawled from the cellphone and hotel domains. Experimental results using varying number of feature seeds show that the proposed association-based bootstrapping approach significantly outperforms the competitors. In fact, one seed feature is all that is needed for LRTBOOT to significantly outperform the other methods. This seed feature can simply be the domain feature, e.g., \"cellphone\" or \"hotel\". The consequence of our discovery is far reaching: starting with just one feature seed, typically just the domain concept word, LRTBOOT can automatically extract a large set of high-quality opinion features from the corpus without any supervision or labeled features. This means that the automatic creation of a set of domain features is no longer a pipe dream!","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"One seed to find them all: mining opinion features via association\",\"authors\":\"Zhen Hai, Kuiyu Chang, G. Cong\",\"doi\":\"10.1145/2396761.2396797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature-based opinion analysis has attracted extensive attention recently. Identifying features associated with opinions expressed in reviews is essential for fine-grained opinion mining. One approach is to exploit the dependency relations that occur naturally between features and opinion words, and among features (or opinion words) themselves. In this paper, we propose a generalized approach to opinion feature extraction by incorporating robust statistical association analysis in a bootstrapping framework. The new approach starts with a small set of feature seeds, on which it iteratively enlarges by mining feature-opinion, feature-feature, and opinion-opinion dependency relations. Two association model types, namely likelihood ratio tests (LRT) and latent semantic analysis (LSA), are proposed for computing the pair-wise associations between terms (features or opinions). We accordingly propose two robust bootstrapping approaches, LRTBOOT and LSABOOT, both of which need just a handful of initial feature seeds to bootstrap opinion feature extraction. We benchmarked LRTBOOT and LSABOOT against existing approaches on a large number of real-life reviews crawled from the cellphone and hotel domains. Experimental results using varying number of feature seeds show that the proposed association-based bootstrapping approach significantly outperforms the competitors. In fact, one seed feature is all that is needed for LRTBOOT to significantly outperform the other methods. This seed feature can simply be the domain feature, e.g., \\\"cellphone\\\" or \\\"hotel\\\". The consequence of our discovery is far reaching: starting with just one feature seed, typically just the domain concept word, LRTBOOT can automatically extract a large set of high-quality opinion features from the corpus without any supervision or labeled features. This means that the automatic creation of a set of domain features is no longer a pipe dream!\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2396797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2396797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

基于特征的意见分析近年来引起了广泛的关注。识别与评论中表达的意见相关的特征对于细粒度意见挖掘至关重要。一种方法是利用特征和意见词之间以及特征(或意见词)本身之间自然发生的依赖关系。在本文中,我们提出了一种将鲁棒统计关联分析结合到自举框架中的广义意见特征提取方法。新方法从一组小的特征种子开始,通过挖掘特征-意见、特征-特征和意见-意见依赖关系,对其进行迭代扩展。提出了两种关联模型类型,即似然比检验(LRT)和潜在语义分析(LSA),用于计算术语(特征或观点)之间的成对关联。因此,我们提出了两种鲁棒的引导方法LRTBOOT和LSABOOT,这两种方法都只需要少量的初始特征种子来引导意见特征提取。我们对LRTBOOT和LSABOOT进行了基准测试,对比现有的方法,从手机和酒店领域抓取了大量真实的评论。使用不同数量的特征种子的实验结果表明,基于关联的自举方法明显优于竞争对手。实际上,LRTBOOT只需要一个种子特性就可以显著优于其他方法。这个种子特征可以是简单的领域特征,例如,“手机”或“酒店”。我们发现的结果是深远的:从一个特征种子开始,通常只是领域概念词,LRTBOOT可以自动从语料库中提取大量高质量的意见特征,而无需任何监督或标记特征。这意味着自动创建一组域特性不再是白日梦!
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One seed to find them all: mining opinion features via association
Feature-based opinion analysis has attracted extensive attention recently. Identifying features associated with opinions expressed in reviews is essential for fine-grained opinion mining. One approach is to exploit the dependency relations that occur naturally between features and opinion words, and among features (or opinion words) themselves. In this paper, we propose a generalized approach to opinion feature extraction by incorporating robust statistical association analysis in a bootstrapping framework. The new approach starts with a small set of feature seeds, on which it iteratively enlarges by mining feature-opinion, feature-feature, and opinion-opinion dependency relations. Two association model types, namely likelihood ratio tests (LRT) and latent semantic analysis (LSA), are proposed for computing the pair-wise associations between terms (features or opinions). We accordingly propose two robust bootstrapping approaches, LRTBOOT and LSABOOT, both of which need just a handful of initial feature seeds to bootstrap opinion feature extraction. We benchmarked LRTBOOT and LSABOOT against existing approaches on a large number of real-life reviews crawled from the cellphone and hotel domains. Experimental results using varying number of feature seeds show that the proposed association-based bootstrapping approach significantly outperforms the competitors. In fact, one seed feature is all that is needed for LRTBOOT to significantly outperform the other methods. This seed feature can simply be the domain feature, e.g., "cellphone" or "hotel". The consequence of our discovery is far reaching: starting with just one feature seed, typically just the domain concept word, LRTBOOT can automatically extract a large set of high-quality opinion features from the corpus without any supervision or labeled features. This means that the automatic creation of a set of domain features is no longer a pipe dream!
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1