Aggeliki Vlachostergiou, George Marandianos, S. Kollias
{"title":"使用上下文感知语言特性的上下文整合","authors":"Aggeliki Vlachostergiou, George Marandianos, S. Kollias","doi":"10.23919/EUSIPCO.2017.8081271","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of context incorporation into human language systems and particular in Sentiment Analysis (SA) systems. So far, the analysis of how different features, when incorporated into such systems, improve their performance, has been discussed in a number of studies. However, a complete picture of their effectiveness remains unexplored. With this work, we attempt to extend the pool of the context — aware language features at the sentence level and to provide the foundations for a concise analysis of the importance of the various types of contextual features, using data from two different in type and size datasets: the Movie Review Dataset (MR) and the Finegrained Sentiment Dataset (FSD).","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Context incorporation using context — aware language features\",\"authors\":\"Aggeliki Vlachostergiou, George Marandianos, S. Kollias\",\"doi\":\"10.23919/EUSIPCO.2017.8081271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of context incorporation into human language systems and particular in Sentiment Analysis (SA) systems. So far, the analysis of how different features, when incorporated into such systems, improve their performance, has been discussed in a number of studies. However, a complete picture of their effectiveness remains unexplored. With this work, we attempt to extend the pool of the context — aware language features at the sentence level and to provide the foundations for a concise analysis of the importance of the various types of contextual features, using data from two different in type and size datasets: the Movie Review Dataset (MR) and the Finegrained Sentiment Dataset (FSD).\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context incorporation using context — aware language features
This paper investigates the problem of context incorporation into human language systems and particular in Sentiment Analysis (SA) systems. So far, the analysis of how different features, when incorporated into such systems, improve their performance, has been discussed in a number of studies. However, a complete picture of their effectiveness remains unexplored. With this work, we attempt to extend the pool of the context — aware language features at the sentence level and to provide the foundations for a concise analysis of the importance of the various types of contextual features, using data from two different in type and size datasets: the Movie Review Dataset (MR) and the Finegrained Sentiment Dataset (FSD).