{"title":"大词汇量词识别器中声学信息的整合","authors":"Vishwa Gupta, Matthew Lennig, P. Mermelstein","doi":"10.1109/ICASSP.1987.1169578","DOIUrl":null,"url":null,"abstract":"This paper proposes a new way of using vector quantization for improving recognition performance for a 60,000 word vocabulary speaker-trained isolated word recognizer using a phonemic Markov model approach to speech recognition. We show that we can effectively increase the codebook size by dividing the feature vector into two vectors of lower dimensionality, and then quantizing and training each vector separately. For a small codebook size, integration of the results of the two parameter vectors provides significant improvement in recognition performance as compared to the quantizing and training of the entire feature set together. Even for a codebook size as small as 64, the results obtained when using the new quantization procedure are quite close to those obtained when using Gaussian distribution of the parameter vectors.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"Integration of acoustic information in a large vocabulary word recognizer\",\"authors\":\"Vishwa Gupta, Matthew Lennig, P. Mermelstein\",\"doi\":\"10.1109/ICASSP.1987.1169578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new way of using vector quantization for improving recognition performance for a 60,000 word vocabulary speaker-trained isolated word recognizer using a phonemic Markov model approach to speech recognition. We show that we can effectively increase the codebook size by dividing the feature vector into two vectors of lower dimensionality, and then quantizing and training each vector separately. For a small codebook size, integration of the results of the two parameter vectors provides significant improvement in recognition performance as compared to the quantizing and training of the entire feature set together. Even for a codebook size as small as 64, the results obtained when using the new quantization procedure are quite close to those obtained when using Gaussian distribution of the parameter vectors.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of acoustic information in a large vocabulary word recognizer
This paper proposes a new way of using vector quantization for improving recognition performance for a 60,000 word vocabulary speaker-trained isolated word recognizer using a phonemic Markov model approach to speech recognition. We show that we can effectively increase the codebook size by dividing the feature vector into two vectors of lower dimensionality, and then quantizing and training each vector separately. For a small codebook size, integration of the results of the two parameter vectors provides significant improvement in recognition performance as compared to the quantizing and training of the entire feature set together. Even for a codebook size as small as 64, the results obtained when using the new quantization procedure are quite close to those obtained when using Gaussian distribution of the parameter vectors.