ROM-less LNS

Rizalafande Che Ismail, J. N. Coleman
{"title":"ROM-less LNS","authors":"Rizalafande Che Ismail, J. N. Coleman","doi":"10.1109/ARITH.2011.15","DOIUrl":null,"url":null,"abstract":"The logarithmic number system has been proposed as an alternative to floating-point arithmetic. Multiplication, division and square-root operations are accomplished with fixed-point methods, but addition and subtraction are considerably more challenging. Recent work has demonstrated that these operations too can be done with similar speed and accuracy to their FP equivalents, but the necessary circuitry is complex. In particular, it is dominated by the need for large ROM tables for the storage of non-linear functions. This paper describes two algorithms, a new co-transformation procedure and an improvement to an existing interpolation method, that reduce these tables to an extent that allows their easy synthesis in logic. An implementation shows substantial reductions in area and delay from the previous best 32-bit realisation, with equivalent accuracy.","PeriodicalId":272151,"journal":{"name":"2011 IEEE 20th Symposium on Computer Arithmetic","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"ROM-less LNS\",\"authors\":\"Rizalafande Che Ismail, J. N. Coleman\",\"doi\":\"10.1109/ARITH.2011.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The logarithmic number system has been proposed as an alternative to floating-point arithmetic. Multiplication, division and square-root operations are accomplished with fixed-point methods, but addition and subtraction are considerably more challenging. Recent work has demonstrated that these operations too can be done with similar speed and accuracy to their FP equivalents, but the necessary circuitry is complex. In particular, it is dominated by the need for large ROM tables for the storage of non-linear functions. This paper describes two algorithms, a new co-transformation procedure and an improvement to an existing interpolation method, that reduce these tables to an extent that allows their easy synthesis in logic. An implementation shows substantial reductions in area and delay from the previous best 32-bit realisation, with equivalent accuracy.\",\"PeriodicalId\":272151,\"journal\":{\"name\":\"2011 IEEE 20th Symposium on Computer Arithmetic\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2011.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

对数数制已被提出作为浮点运算的替代方法。乘法、除法和平方根运算都是用不动点法完成的,但加法和减法要困难得多。最近的研究表明,这些操作也可以以类似FP的速度和精度完成,但必要的电路是复杂的。特别是,它主要是由于需要大型ROM表来存储非线性函数。本文描述了两种算法,一种新的共变换过程和对现有插值方法的改进,将这些表简化到易于逻辑综合的程度。一种实现显示,与之前最好的32位实现相比,在同等精度下,面积和延迟大幅减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROM-less LNS
The logarithmic number system has been proposed as an alternative to floating-point arithmetic. Multiplication, division and square-root operations are accomplished with fixed-point methods, but addition and subtraction are considerably more challenging. Recent work has demonstrated that these operations too can be done with similar speed and accuracy to their FP equivalents, but the necessary circuitry is complex. In particular, it is dominated by the need for large ROM tables for the storage of non-linear functions. This paper describes two algorithms, a new co-transformation procedure and an improvement to an existing interpolation method, that reduce these tables to an extent that allows their easy synthesis in logic. An implementation shows substantial reductions in area and delay from the previous best 32-bit realisation, with equivalent accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Multiply-Add Microarchitecture Comprising Separate Early-Normalizing Multiply and Add Pipelines A 1.5 Ghz VLIW DSP CPU with Integrated Floating Point and Fixed Point Instructions in 40 nm CMOS Flocq: A Unified Library for Proving Floating-Point Algorithms in Coq Teraflop FPGA Design Self Checking in Current Floating-Point Units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1