基于Twitter数据的实时微博情感分析

Reshma Banu, G. F. A. Ahammed, G. Divya, V. D. Reddy, Nuthanakanti Bhaskar, M. Kanthi
{"title":"基于Twitter数据的实时微博情感分析","authors":"Reshma Banu, G. F. A. Ahammed, G. Divya, V. D. Reddy, Nuthanakanti Bhaskar, M. Kanthi","doi":"10.1109/INOCON57975.2023.10101366","DOIUrl":null,"url":null,"abstract":"The basic purpose of sentiment analysis is to determine how someone feels when they comment or express their feelings or emotions. Positive, neutral, and negative emotions are the three categories into which emotions are divided. Everyone will use and apply this analysis on social media; online; everyone expresses their opinions by clicking on the like, remark, or share buttons. Using the Random Forest, SVM, and Nave Bayes algorithms, the Twitter tweets in this study were identified as positive or negative, with F1-Scores of 0.224, 0.410, and 0.702, respectively, and accuracy values of 50%, 52%, and 73%.","PeriodicalId":113637,"journal":{"name":"2023 2nd International Conference for Innovation in Technology (INOCON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis for Real-Time Micro Blogs using Twitter Data\",\"authors\":\"Reshma Banu, G. F. A. Ahammed, G. Divya, V. D. Reddy, Nuthanakanti Bhaskar, M. Kanthi\",\"doi\":\"10.1109/INOCON57975.2023.10101366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic purpose of sentiment analysis is to determine how someone feels when they comment or express their feelings or emotions. Positive, neutral, and negative emotions are the three categories into which emotions are divided. Everyone will use and apply this analysis on social media; online; everyone expresses their opinions by clicking on the like, remark, or share buttons. Using the Random Forest, SVM, and Nave Bayes algorithms, the Twitter tweets in this study were identified as positive or negative, with F1-Scores of 0.224, 0.410, and 0.702, respectively, and accuracy values of 50%, 52%, and 73%.\",\"PeriodicalId\":113637,\"journal\":{\"name\":\"2023 2nd International Conference for Innovation in Technology (INOCON)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference for Innovation in Technology (INOCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INOCON57975.2023.10101366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference for Innovation in Technology (INOCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INOCON57975.2023.10101366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情绪分析的基本目的是确定某人在评论或表达自己的感受或情绪时的感受。积极情绪、中性情绪和消极情绪是情绪的三种类型。每个人都会在社交媒体上使用和应用这一分析;在线;每个人都通过点赞、评论或分享按钮来表达自己的观点。本研究使用随机森林、支持向量机和朴素贝叶斯算法对Twitter推文进行正面和负面识别,F1-Scores分别为0.224、0.410和0.702,准确率分别为50%、52%和73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment Analysis for Real-Time Micro Blogs using Twitter Data
The basic purpose of sentiment analysis is to determine how someone feels when they comment or express their feelings or emotions. Positive, neutral, and negative emotions are the three categories into which emotions are divided. Everyone will use and apply this analysis on social media; online; everyone expresses their opinions by clicking on the like, remark, or share buttons. Using the Random Forest, SVM, and Nave Bayes algorithms, the Twitter tweets in this study were identified as positive or negative, with F1-Scores of 0.224, 0.410, and 0.702, respectively, and accuracy values of 50%, 52%, and 73%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study of Machine Learning Algorithms for Predicting Heart Disease Analysis and Evaluation of Medical Care Data using Analytic Fuzzy Process Digital Image Enhancement using Conventional Neural Network Multi-View Image Reconstruction Algorithm Based on Virtual Reality Technology Application of Web Data Mining Technology in Computer Information Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1