{"title":"基于动态矢量场提取的并行跟踪无人机最佳飞行区域研究","authors":"Ahmad Drak, A. Asteroth","doi":"10.1109/ACIT.2018.8672714","DOIUrl":null,"url":null,"abstract":"In this paper we present work towards finding an optimal flight zone of an Unmanned Aerial Vehicle (UAV) as adhering to space-restricting factors brought upon by a dynamic vector field extraction algorithm. The objective of the UAV is to perform side-by-side tracking and following of a lightweight ground vehicle while acquiring high quality video of tufts attached to the side of the tracked vehicle. The recorded video is supplied to a dynamic vector field extraction algorithm that produces the positions and deformations of the tufts over time as they interact with the surrounding air, resulting in an airflow model of the tracked vehicle. The present limitations of wind tunnel tests and computational fluid dynamics simulation suggest the use of a UAV for real world evaluation of the aerodynamic properties of the shell of the vehicles exterior. The novelty of the proposed approach is alluded to defining specific flight zone restricting factors while adhering to the vector field extraction algorithm, where as a result we were capable of formalizing a locally-static and a globally-dynamic geofence attached to the tracked vehicle and enclosing the UAV. Moreover, a drone video quality and stability analysis tool was implemented to aid in quantifying the quality of the drone video and in constructing the geofence.","PeriodicalId":443170,"journal":{"name":"2018 International Arab Conference on Information Technology (ACIT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Finding an Optimal Flight Zone for a Side-by-Side Tracking UAV w.r.t Extraction of Dynamic Vector Fields\",\"authors\":\"Ahmad Drak, A. Asteroth\",\"doi\":\"10.1109/ACIT.2018.8672714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present work towards finding an optimal flight zone of an Unmanned Aerial Vehicle (UAV) as adhering to space-restricting factors brought upon by a dynamic vector field extraction algorithm. The objective of the UAV is to perform side-by-side tracking and following of a lightweight ground vehicle while acquiring high quality video of tufts attached to the side of the tracked vehicle. The recorded video is supplied to a dynamic vector field extraction algorithm that produces the positions and deformations of the tufts over time as they interact with the surrounding air, resulting in an airflow model of the tracked vehicle. The present limitations of wind tunnel tests and computational fluid dynamics simulation suggest the use of a UAV for real world evaluation of the aerodynamic properties of the shell of the vehicles exterior. The novelty of the proposed approach is alluded to defining specific flight zone restricting factors while adhering to the vector field extraction algorithm, where as a result we were capable of formalizing a locally-static and a globally-dynamic geofence attached to the tracked vehicle and enclosing the UAV. Moreover, a drone video quality and stability analysis tool was implemented to aid in quantifying the quality of the drone video and in constructing the geofence.\",\"PeriodicalId\":443170,\"journal\":{\"name\":\"2018 International Arab Conference on Information Technology (ACIT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT.2018.8672714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT.2018.8672714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Finding an Optimal Flight Zone for a Side-by-Side Tracking UAV w.r.t Extraction of Dynamic Vector Fields
In this paper we present work towards finding an optimal flight zone of an Unmanned Aerial Vehicle (UAV) as adhering to space-restricting factors brought upon by a dynamic vector field extraction algorithm. The objective of the UAV is to perform side-by-side tracking and following of a lightweight ground vehicle while acquiring high quality video of tufts attached to the side of the tracked vehicle. The recorded video is supplied to a dynamic vector field extraction algorithm that produces the positions and deformations of the tufts over time as they interact with the surrounding air, resulting in an airflow model of the tracked vehicle. The present limitations of wind tunnel tests and computational fluid dynamics simulation suggest the use of a UAV for real world evaluation of the aerodynamic properties of the shell of the vehicles exterior. The novelty of the proposed approach is alluded to defining specific flight zone restricting factors while adhering to the vector field extraction algorithm, where as a result we were capable of formalizing a locally-static and a globally-dynamic geofence attached to the tracked vehicle and enclosing the UAV. Moreover, a drone video quality and stability analysis tool was implemented to aid in quantifying the quality of the drone video and in constructing the geofence.