全变分优化的不完全数据ISAR重建

A. Draganic, I. Orović, S. Stankovic, Xiumei Li
{"title":"全变分优化的不完全数据ISAR重建","authors":"A. Draganic, I. Orović, S. Stankovic, Xiumei Li","doi":"10.1109/MECO.2016.7525784","DOIUrl":null,"url":null,"abstract":"Sparsity of the ISAR images is exploited with the aim to use the possibility of applying an under-sampling strategy as assumed by the compressive sensing approach. The signal sparsity is a desirable property that needs to be satisfied in order to reconstruct the signals and images from the compressive sensed data. It is assumed that certain amount of radar data is not available and the idea is to reconstruct the radar image from the rest of the data. The signal samples are observed in the spatial domain, and the reconstruction is based on the total variation minimization. The procedure is tested on both, synthetic and real ISAR image, showing satisfactory reconstruction quality with a small set of acquired samples.","PeriodicalId":253666,"journal":{"name":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","volume":"129 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ISAR reconstruction from incomplete data using total variation optimization\",\"authors\":\"A. Draganic, I. Orović, S. Stankovic, Xiumei Li\",\"doi\":\"10.1109/MECO.2016.7525784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparsity of the ISAR images is exploited with the aim to use the possibility of applying an under-sampling strategy as assumed by the compressive sensing approach. The signal sparsity is a desirable property that needs to be satisfied in order to reconstruct the signals and images from the compressive sensed data. It is assumed that certain amount of radar data is not available and the idea is to reconstruct the radar image from the rest of the data. The signal samples are observed in the spatial domain, and the reconstruction is based on the total variation minimization. The procedure is tested on both, synthetic and real ISAR image, showing satisfactory reconstruction quality with a small set of acquired samples.\",\"PeriodicalId\":253666,\"journal\":{\"name\":\"2016 5th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"129 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2016.7525784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2016.7525784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

ISAR图像的稀疏性被利用,目的是利用压缩感知方法假设的欠采样策略的可能性。从压缩感知数据中重建信号和图像需要满足信号稀疏性的要求。假设有一定数量的雷达数据是不可用的,其思想是从其余的数据重建雷达图像。在空间域中对信号样本进行观测,并基于总变差最小化进行重构。该方法在合成图像和真实图像上进行了测试,在少量采集样本的情况下显示出令人满意的重建质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ISAR reconstruction from incomplete data using total variation optimization
Sparsity of the ISAR images is exploited with the aim to use the possibility of applying an under-sampling strategy as assumed by the compressive sensing approach. The signal sparsity is a desirable property that needs to be satisfied in order to reconstruct the signals and images from the compressive sensed data. It is assumed that certain amount of radar data is not available and the idea is to reconstruct the radar image from the rest of the data. The signal samples are observed in the spatial domain, and the reconstruction is based on the total variation minimization. The procedure is tested on both, synthetic and real ISAR image, showing satisfactory reconstruction quality with a small set of acquired samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logo watermarking for speech signal protection in the compressive sensing scenario Unaliasing of undersampled spectra Driving behavior simulator of lane changing using user-designed interface Prediction of children diseases using semantics Comparative analysis of classification algorithms on three different datasets using WEKA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1