基于仿生视觉传感器的夜视障碍物检测与避障

J. Yasin, S. Mohamed, M. Haghbayan, J. Heikkonen, H. Tenhunen, M. Yasin, J. Plosila
{"title":"基于仿生视觉传感器的夜视障碍物检测与避障","authors":"J. Yasin, S. Mohamed, M. Haghbayan, J. Heikkonen, H. Tenhunen, M. Yasin, J. Plosila","doi":"10.1109/SENSORS47125.2020.9278914","DOIUrl":null,"url":null,"abstract":"Moving towards autonomy, unmanned vehicles rely heavily on state-of-the-art collision avoidance systems (CAS). However, the detection of obstacles especially during night-time is still a challenging task since the lighting conditions are not sufficient for traditional cameras to function properly. Therefore, we exploit the powerful attributes of event-based cameras to perform obstacle detection in low lighting conditions. Event cameras trigger events asynchronously at high output temporal rate with high dynamic range of up to 120 dB. The algorithm filters background activity noise and extracts objects using robust Hough transform technique. The depth of each detected object is computed by triangulating 2D features extracted utilising LC-Harris. Finally, asynchronous adaptive collision avoidance (AACA) algorithm is applied for effective avoidance. Qualitative evaluation is compared using event-camera and traditional camera.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Night vision obstacle detection and avoidance based on Bio-Inspired Vision Sensors\",\"authors\":\"J. Yasin, S. Mohamed, M. Haghbayan, J. Heikkonen, H. Tenhunen, M. Yasin, J. Plosila\",\"doi\":\"10.1109/SENSORS47125.2020.9278914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving towards autonomy, unmanned vehicles rely heavily on state-of-the-art collision avoidance systems (CAS). However, the detection of obstacles especially during night-time is still a challenging task since the lighting conditions are not sufficient for traditional cameras to function properly. Therefore, we exploit the powerful attributes of event-based cameras to perform obstacle detection in low lighting conditions. Event cameras trigger events asynchronously at high output temporal rate with high dynamic range of up to 120 dB. The algorithm filters background activity noise and extracts objects using robust Hough transform technique. The depth of each detected object is computed by triangulating 2D features extracted utilising LC-Harris. Finally, asynchronous adaptive collision avoidance (AACA) algorithm is applied for effective avoidance. Qualitative evaluation is compared using event-camera and traditional camera.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了实现自动驾驶,无人驾驶汽车严重依赖于最先进的防撞系统(CAS)。然而,障碍物的检测仍然是一项具有挑战性的任务,特别是在夜间,因为照明条件不足以使传统相机正常工作。因此,我们利用基于事件的相机的强大属性来执行低光照条件下的障碍物检测。事件相机以高输出时间速率异步触发事件,动态范围高达120 dB。该算法利用鲁棒霍夫变换技术过滤背景活动噪声,提取目标。每个检测到的目标的深度是通过三角测量利用LC-Harris提取的2D特征来计算的。最后,采用异步自适应避碰算法(AACA)进行有效避碰。对事件摄像机和传统摄像机进行了定性评价比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Night vision obstacle detection and avoidance based on Bio-Inspired Vision Sensors
Moving towards autonomy, unmanned vehicles rely heavily on state-of-the-art collision avoidance systems (CAS). However, the detection of obstacles especially during night-time is still a challenging task since the lighting conditions are not sufficient for traditional cameras to function properly. Therefore, we exploit the powerful attributes of event-based cameras to perform obstacle detection in low lighting conditions. Event cameras trigger events asynchronously at high output temporal rate with high dynamic range of up to 120 dB. The algorithm filters background activity noise and extracts objects using robust Hough transform technique. The depth of each detected object is computed by triangulating 2D features extracted utilising LC-Harris. Finally, asynchronous adaptive collision avoidance (AACA) algorithm is applied for effective avoidance. Qualitative evaluation is compared using event-camera and traditional camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quartz Crystal Microbalance Sensor Based on Peptide Anchored Single-Walled Carbon Nanotubes for Highly Selective TNT Explosive Detection BaTiO3 sensitive film enhancement for CO2 detection Comparable Data Evaluation Method for a Radio-Nuclear Sensor When Used on an UAV Reusable acoustic tweezers enable 2D patterning of microparticles in microchamber on a disposable silicon chip superstrate Optimizing Novel Inorganic Scintillation Detectors for Applications in Medical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1